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Abstract—From infinitely many equispaced samples, a ban-
dlimited signal can be reconstructed as a linear combination
of shifted sinc functions, where the coefficients are the sample
values. If instead of receiving infinitely many equispaced samples,
we receive M nonuniformly spaced samples, the optimal recon-
struction is still a linear combination of shifted sincs, but one
must solve an ill-conditioned system of equations to determine
the coefficients. For large scale problems, this can be infeasible.
By using the structural and spectral properties of the system of
equations, we can obtain the weights in slightly worse than linear
time in the number of samples.

I. INTRODUCTION

In this paper we develop an efficient numerical technique
for solving the symmetric system of equations that arises when
a signal is being reconstructed from a finite number of non-
uniform samples. Reconstructing from nonuniform samples is
a classic problem in signal processing [1], [2], as well as
frame theory [3]–[5]. Applications of nonuniform sampling
are manifold, arising in seismic imaging, radar imaging, level-
crossing analog-to-digital converters, and array processing.

The key computation is solving a symmetric positive def-
inite system of equations of the form y = (G + δI)z. Our
analysis below will show if the signal is bandlimited to W and
if we collect M ∼ 2WT log(2WT ) samples in a time interval
of length T , then almost all of the eigenvalues of this system
are ∼ M

2WT or ≈ δ. We then show that this approximately two-
tiered eigenvalue structure means that the conjugate gradients
algorithm for solving this system is guaranteed to converge in a
small number of iterations, logarithmic in all the parameters of
the problem. Moreover, since G+δI is a generalized Cauchy-
like matrix (see Section III), it can be approximately applied
in linear time. Combing these results means that the system
above can be solved in time roughly linear in the number of
samples M .

The solution to the system above parameterizes a
continuous-time bandlimited signal. We also show that com-
puting a batch of uniformly spaced samples of this signal
can be done in linear time, again by exploiting the Cauchy
structure of the forward operator.

This work is similar to [6], which studies reconstructing
a trigonometric polynomial from nonuniform samples. The
resulting system of equations for that problem is Toeplitz,
and thus, each iteration of the conjugate gradients algorithm
takes O(M logM) operations. This work is also similar to
[7], which studies reconstructing a bandlimited signal from
nonuniform samples, but doesn’t explore fast methods for

solving the resulting system of equations when the number
of samples is large.

II. PROBLEM FORMULATION

Suppose we have a continuous time bandlimited signal

xc(t) =

∫ W

−W
X(f)ej2πft df,

and we observe a vector y ∈ CM of M (possibly noisy) sam-
ples of the signal at nonuniformly spaced times t1, . . . , tM ∈
[−T2 ,

T
2 ] i.e.

y[m] = xc(tm) + noise for m = 1, . . . ,M.

We can treat recovering xc(t) as a linear inverse problem
where we try to estimate the sequence xd ∈ `2(Z) of Nyquist-
rate samples

xd[n] = xc
(
n

2W

)
for n ∈ Z.

For any time t ∈ R, define a shifted sinc sequence at ∈ `2(Z)
by

at[n] =
sin[π(n− 2Wt)]

π(n− 2Wt)
for n ∈ Z.

Then, using the Whittaker-Shannon interpolation formula, we
can write

y[m] = xc(tm) + noise

=

∞∑
n=−∞

sin[π(n− 2Wtm)]

π(n− 2Wtm)
xc

( n

2W

)
+ noise

= 〈atm ,xd〉+ noise.

Let A : `2(Z)→ CM be the operator which sinc-interpolates
a sequence of samples x ∈ `2(Z) at times t1, . . . , tM , i.e.

(Ax)[m] = 〈atm ,x〉 for m = 1, . . . ,M

For a given vector of measurements y ∈ CM and a regular-
ization parameter δ > 0, we can estimate the Nyquist rate
samples xd by solving the Tikhonov regularization problem

x̂ = arg min
x∈`2(Z)

‖y −Ax‖22 + δ‖x‖2`2(Z).



The solution to this Tikhonov regularization problem can be
written as

x̂ = A∗(AA∗ + δI)−1y
= A∗[(G+ δI)−1y]

where the adjoint A∗ : CM → `2(Z) is given by

A∗z =

M∑
m=1

z[m]atm ,

and the Gram matrix G ∈ CM×M is given by

G[m,m′] =
〈
atm ,atm′

〉
=

sin[2πW (tm − tm′)]

2πW (tm − tm′)
.

In other words, the reconstruction of the Nyquist-rate sam-
ples is given by

x̂d[n] =

M∑
m=1

z[m]
sin[π(n− 2Wtm)]

π(n− 2Wtm)
.

Thus, the corresponding continuous time signal

x̂c(t) =

M∑
m=1

z[m]
sin[2πW (t− tm)]

2πW (t− tm)
,

is a linear combination of sincs shifted by the sample times.
This is very similar to the classic Whittaker–Shannon inter-
polation formula, except the weights z[m] satisfy the system
of equations (G + δI)z = y instead of being the samples
themselves.

After solving the system (G + δI)z = y, we can evaluate
x̂c(t) at N sample times via a matrix-vector multiply[

x̂c(s1) · · · x̂c(sN )
]T

= Hz

where the matrix H ∈ RN×M has entries

H[n,m] =
sin[2πW (sn − tm)]

2πW (sn − tm)
.

For large M and N , explicitly forming G+ δI and solving
(G + δI)z = y takes O(M2.37369) operations [8] via an
improvement over the Coppersmith–Winograd algorithm [9]1.
for practical values of M . Also, explicitly computing Hz
takes O(MN) operations.

In this work, we note that the matrices G + δI and H
have a special structure which allows us to multiply them
by an M × 1 vector in O(M log 1

α ) and O((N +M) log 1
α )

operations respectively, where α is the approximation toler-
ance. Furthermore, if we have at least M & 3WT log

(
4WT
β

)
samples which are chosen i.i.d. Uniform[−T2 ,

T
2 ], then with

probability at least 1 − β, the eigenvalues of G + δI ex-
hibit a special clustering property which can be used to
prove that conjugate gradient descent (CGD) will only need
O(polylog(2WT, M

2WT ,
1
δ ,

1
ε )) iterations to return a solution ẑ

1It should be noted that Strassen’s algorithm, which has a runtime of
O(M2.807) is often used in practice over the Coppersmith–Winograd al-
gorithm as it is faster for practical values of M [10].

satisfying ‖ẑ−(G+δI)−1y‖2 ≤ ε‖y‖2. Hence, we can solve
this nonuniform sinc interpolation problem in complexity that
is only polylogarithmically worse than linear time in M and
N .

III. STRUCTURED MATRICES

Our first objective is to demonstrate that the matrices G+δI
and H can be applied to a vector efficiently, even if M
and N are large. We start by defining a couple types of
structured matrices for which there are efficient matrix-vector
multiplication methods.

A Cauchy matrix is an N ×M matrix whose entries are of
the form

C[n,m] =
1

σn − τm
where σ1, . . . , σN and τ1, . . . , τM are real numbers such that
σn 6= τm for all indices n,m. Using the fast multipole method
[11], [12], it is possible to apply an N ×M Cauchy matrix to
an M × 1 vector in O((N +M) log 1

α ) operations, where α
is the desired level of precision. See [13] for details on using
the fast multipole method for Cauchy matrices.

A Cauchy-like matrix is an M ×M matrix whose entries
are of the form

K[m,m′] =


1

τm − τm′
if m 6= m′

0 if m = m′

where τ1, . . . , τM are real numbers such that τm 6= τm′ if
m 6= m′. Again, we can use the fast multipole method to
apply an M × M Cauchy-like matrix to an M × 1 vector
in O(M log 1

α ) operations, where α is the desired level of
precision.

A generalized Cauchy matrix is an N ×M matrix whose
entries are of the form

C̃[n,m] =

r∑
`=1

p`[n]q`[m]

σn − τm

where p1, . . . ,pr ∈ CN , q1, . . . , qr ∈ CM , and σ1, . . . , σN
and τ1, . . . , τM are real numbers such that σn 6= τm for all
indices n,m. Note that we can write2

C̃ =

r∑
`=1

Dp`
CD∗q`

where C is a Cauchy matrix. Applying each term Dp`
CD∗q`

to an M × 1 vector takes O((N +M) log 1
α ) operations via

two diagonal matrix multiplies and a Cauchy matrix multiply.
Hence, applying the sum of r matrices of that form takes
O(r(N +M) log 1

α ) operations.
A symmetric generalized Cauchy-like matrix is an M ×M

matrix whose entries are of the form

K̃[m,m′] =


r∑
`=1

p`[m]q`[m
′]− q`[m]p`[m

′]

τm − τm′
if m 6= m′

dm if m = m′

2For a vector v, we use Dv to denote a diagonal matrix whose diagonal
entries match the entries of the vector v, i.e. Dv [m,m] = v[m].
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where p1, . . . ,pr ∈ CM , q1, . . . , qr ∈ CM , and τ1, . . . , τM
are real numbers such that τm 6= τm′ if m 6= m′. Note that
we can write

K̃ = Dd +

r∑
`=1

Dp`
KD∗q` −Dq`KD∗p`

where K is a Cauchy-like matrix. Applying each term
Dp`

KDq` or Dq`KD∗p`
to an M × 1 vector takes

O(M log 1
α ) operations via two diagonal matrix multiplies

and a Cauchy matrix multiply. Applying Dd to a vector
takes O(M) operations via a diagonal matrix multiply. Hence,
applying the above sum to an M×1 vector takes O(rM log 1

α )
operations.

The matrix H defined in the previous section is a gener-
alized Cauchy matrix. To see this, note that the entries of H
can be written as

H[n,m] =
sin[2πW (sn − tm)]

2πW (sn − tm)

=
sin(2πWsn) cos(2πWtm)− cos(2πWsn) sin(2πWtm)

2πWsn − 2πWtm

Hence, H fits the form of a generalized Cauchy matrix with
σn = 2πWsn, τm = 2πWtm, r = 2, p1[n] = sin(2πWsn),
p2[n] = cos(2πWsn), q1[m] = cos(2πWtm), q2[m] =
− sin(2πWtm). Therefore, H can be applied to an M × 1
vector in O((N +M) log 1

α ) operations.
In a similar manner, the matrix G+ δI defined in the pre-

vious section is a symmetric generalized Cauchy-like matrix.
The diagonal entries are all 1+ δ, and the off-diagonal entries
are

G[m,m′] =
sin[2πW (tm − tm′)]

2πW (tm − tm′)

=
sin(2πWtm) cos(2πWtm′)− cos(2πWtm) sin(2πWtm′)

2πWtm − 2πWtm′

Hence, G + δI fits the form of a generalized Cauchy-like
matrix with τm = 2πWtm, r = 1, p1[m] = sin(2πWtm),
q1[m] = cos(2πWtm), and dm = 1 + δ. Therefore, G + δI
can be applied to an M × 1 vector in O(M log 1

α ) operations.

IV. SPECTRAL PROPERTIES

A symmetric generalized Cauchy-like matrix K̃ satisfies a
low-rank displacement equation

Dτ K̃ − K̃Dτ = PQ∗ −QP ∗,

where P =
[
p1 · · · pr

]
and Q =

[
q1 · · · qr

]
. Also,

the entries of K̃ can be recovered from the parameters
τ1, . . . , τM , d1, . . . , dM , and the “generators” P and Q.

Furthermore, if K̃ is invertible, then K̃
−1

also satisfies a
low-rank displacement equation

Dτ K̃
−1
− K̃

−1
Dτ = K̃

−1
QP ∗K̃

−1
− K̃

−1
PQ∗K̃

−1
,

and thus, K̃
−1

is also a symmetric generalized Cauchy-like
matrix.

This fact has been exploited to yield recursive methods for
inverting symmetric generalized Cauchy-like matrices [14],

Fig. 1. A plot of the eigenvalues of G. The largest 2WT = 400 eigenvalues
are all between λ1(G) ≈ 11.43 and λ400(G) ≈ 0.6597. The smallest
1577 eigenvalues are all between λ424(G) ≈ 1.68× 10−14 and 0. Only 24
eigenvalues fail to fit in one of those ranges.

[15]. These methods partition the generalized Cauchy-like
matrix K̃ into a 2 × 2 block matrix, compute the generators
of the (1, 1)-block and its Schur complement via recursion,
and then determine the “generators” of K̃. This Schur re-
cursion takes O(rM logM log 1

α ) operations to compute the

generators of K̃
−1

. Unfortunately, for our problem, when
the number of samples exceeds 2WT + O(log(2WT )), the
matrix G becomes numerically rank deficient. As such, these
recursive methods for inverting G are unstable if more than a
few recursive stages are used.

Figure 1 shows a plot of the eigenvalues of G in descending
order where we have chosen M = 2000, W = 1

2 , T = 400,
and t1, . . . , tM are i.i.d. Uniform[−T2 ,

T
2 ]. It can be seen that

the first ≈ 2WT = 400 eigenvalues are all roughly the same
order of magnitude, and for m > 2WT , the eigenvalues
λm(G) decay exponentially towards zero as m increases.

We remark that this behavior is very similar to that of the
eigenvalues of the prolate spheroidal wave functions (PSWF)
[16]–[19]. The first ≈ 2WT PSWF eigenvalues are ≈ 1,
and the rest exponentially decay towards zero. Also, in the
specific case where the sample times are uniformly spaced,
the matrix G becomes the so called prolate matrix [20] whose
eigenvalues also exhibit the same clustering behavior as the
PSWF eigenvalues.

V. CONJUGATE GRADIENT DESCENT

Conjugate gradient descent (CGD) is an iterative algorithm
which aims to solve the system of equations Az = y for a
positive definite matrix A ∈ CM×M and a vector y ∈ CM . If
the solution to the system of equations is ẑ = A−1y, and we
initialize CGD to start at z(0) = 0, then the output of CGD
at the k-th iteration is

z(k) = arg min
z∈Kk(A,y)

(z − ẑ)∗A(z − ẑ)
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where Kk(A,y) = span{y,Ay,A2y, . . . ,Ak−1y} is the
order-k Krylov subspace generated by A and y.

As a result, it can be shown that the error after k iterations

‖z(k) − ẑ‖2A := (z(k) − ẑ)∗A(z(k) − ẑ)

satisfies the bound

‖z(k) − ẑ‖2A ≤ ‖ẑ‖2A · min
polynomials P

degP=k
P (0)=1

[
max

λ∈Spec(A)
|P (λ)|2

]
.

For a general matrix A, this bound is often simplified by
first relaxing the maximum over λ ∈ Spec(A) to the maximum
over λ ∈ [λmin(A), λmax(A)], and then using properties of
Chebyshev polynomials to get

‖z(k) − ẑ‖A ≤ ‖ẑ‖A · 2
(√

κ− 1√
κ+ 1

)k
,

where κ = λmax(A)/λmin(A) is the condition number of A.
Hence, CGD returns a vector z(k) which satisfies ‖z(k) −
ẑ‖A ≤ ε‖ẑ‖A in at most

⌈
1
2

√
κ log 2

ε

⌉
iterations. A more

detailed discussion regarding CGD can be found in [21].
For our matrix G+δI, the largest eigenvalue is ∼ M

2WT and
the smallest eigenvalue is ≈ δ. Hence, the condition number
is roughly κ ∼ M

2WTδ . Typically, the regularization parameter
δ will be chosen to be small (values of 10−2 to 10−5 are
typical), and thus, κ will be rather large. Hence, the bound
of
⌈
1
2

√
κ log 2

ε

⌉
iterations is worrisome. It is possible to get

a better bound if we exploit the clustering behavior of the
eigenvalues of G+ δI.

By using the fact that G = AA∗ has the same non-zero
eigenvalues as A∗A =

∑M
m=1 atma∗tm , matrix concentration

inequalities from [22], and bounds on the number of prolate
spheroidal wave function eigenvalues in the so called “plunge
region” [23], we can get the following result.

Lemma 1. If the sample times t1, . . . , tM are i.i.d.
Uniform[−T2 ,

T
2 ], then there exist constants C1, C2, C3 > 0

and indices m1 and m2 such that

m2 −m1 ≤ C3 log(2WT ) log

(
M2

δ9/4ε1/4

)
and the following bounds hold simultaneously with probability

at least 1− 4WTe−
M

3WT :

λ1(G) ≤ C1
M

2WT
,

λm1(G) ≥ C2
M

2WT
,

λm2(G) ≤ 2δ(δε)1/8.

Furthermore, the following lemma gives a bound of the
number of CGD iterations required when working with a
matrix with similar eigenvalue clustering behavior.

Lemma 2. Let A ∈ CM×M be a positive-semidefinite matrix.
Let y ∈ CM and define ẑ = A−1y. Let z(k) ∈ CM be the
CGD iterates with initial point z(0) = 0, and let ε > 0 be

the desired CGD tolerance. Suppose there exist real numbers
δ, a, b, c1, c2, . . . , cL with δ + 2δ(δε)1/8 < c1 < c2 < · · · <
cL < a < b such that

Spec(A) ⊆
[
δ, δ + 2δ(δε)1/8

]⋃
{c`}L`=1

⋃
[a, b].

Then, after

k =


(L+ d) ln

(
b−δ
δ

)
+ ln

(
2
δε

)
ln

(√
b/a+1√
b/a−1

)
+ L+ 8

iterations, we have ‖z(k) − ẑ‖2 ≤ ε‖y‖2.

The proof of this lemma invokes properties of Chebyshev
polynomials to explicitly construct a polynomial P (λ) such
that P (0) = 1, P (c`) = 0 for ` = 1, . . . , L, and |P (λ)| ≤ δε
for λ ∈ [δ, δ + 2δ(δε)1/8] and λ ∈ [a, b]. Then, the degree of
the polynomial is a bound on the number of CGD iterations
needed for convergence.

If we apply lemma 2 to the matrix G + δI along with
the eigenvalue bounds from lemma 1, we get that CGD will
only need O(polylog(2WT, M

2WT ,
1
δ ,

1
ε )) iterations to return a

solution ẑ satisfying ‖ẑ − (G + δI)−1y‖2 ≤ ε‖y‖2. Due to
space constraints, the proofs of these lemmas will be deferred
to a future publication.

VI. EXTENSION TO MULTIBAND SIGNALS

The problem setup has a fairly straightforward extension to
multiband signals, i.e. signals of the form

xc(t) =

L∑
`=1

∫ f`+W`

f`−W`

X(f)ej2πft df,

where the intervals [f` − W`, f` + W`] are disjoint. The
reconstructed signal is again a linear combination of functions
φ(t) that are each shifted by the sample times

x̂c(t) =

M∑
m=1

z[m]φ(t− tm).

However, instead of a sinc function, φ(t) is a sum of sincs
that are modulated to the center frequency of each interval,
i.e.

φ(t) =

L∑
`=1

sin(2πW`t)

πt
ej2πf`t.

As in the single band case, we have to solve the system of
equations

(G+ δI)z = y

to get the coefficients z[m] where G is an M ×M matrix
defined by

G[m,m′] = φ(tm − tm′).

After obtaining the coefficients z[m], we can evaluate the
reconstruction at times s1, . . . , sN via[

x̂c(s1) · · · x̂c(sN )
]T

= Hz
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where H is an N ×M matrix defined by

H[n,m] = φ(sn − tm).

Similarly to the single band case, we can show that G+δI is a
generalized Cauchy-like matrix with r = L, and H is a gener-
alized Cauchy matrix with r = 2L. As such, G+δI and H can
be applied to an M×1 vector in O(LM log 1

α ) operations and
O(L(N +M) log 1

α ) operations respectively where α is the
approximation tolerance. Unfortunately, we do not yet have a
theoretical bound on the number of CGD iterations needed for
convergence in the multiband case. However, we hypothesis
the number of iterations to be O(Lpolylog(2WT, M

2WT ,
1
δ ,

1
ε ))

with high probability.

VII. EXPERIMENTS

We run a synthetic experiment to test the efficiency of
our proposed method for multiband signal reconstruction as
the number of samples M gets large. We first generate a
multiband signal xc(t) whose Fourier transform is supported
on f ∈ [−0.9,−0.6]∪[0.1, 0.2]∪[0.9, 1.0] by summing several
sinusoids at random frequencies in those bands. For several
values of M between 210 and 218, we pick T such that
M ≈ 2WtotalT log

(
2WtotalT
0.01

)
where Wtotal = 0.5 is the total

occupied bandwidth, and then draw M random sample times
t1, . . . , tM i.i.d. Uniform[−T2 ,

T
2 ]. This choice of T ensures

that the spectrum of G is very likely to have the clustering
behavior described in section IV. We then set δ = 10−4 and
attempt reconstruct the signal on a grid of N =M uniformly
spaced sample times in [−T2 ,

T
2 ] using three methods:

• Use CGD along with the fast method for applying G+δI
to solve (G + δI)z = y. Then, use the fast method for
computing Hz to evaluate x̂c(t) at the uniformly spaced
times.

• Use CGD to solve (G + δI)z = y, but explicitly form
G+ δI. Then, explicitly form H to evaluate x̂c(t) at the
uniformly spaced times.

• Solve the system (G + δI)z = y using MATLAB’s
backslash operator. Then, explicitly form H to evaluate
x̂c(t) at the uniformly spaced times.

Note that due to memory constraints, we were only able to test
the 2nd and 3rd methods for M < 215. For each value of M ,
we repeat this experiment 10 times, to get an accurate average
result. The average time to compute the reconstructed signal at
the uniform grid of sample times versus the number of samples
is shown in figure 2 and the average relative RMS error of the
reconstructed uniform samples versus the number of samples
is shown in figure 3. All three methods achieve nearly identical
reconstruction errors. For M > 211, our proposed method is
noticeably faster than the methods which don’t take advantage
of the structure of G+ δI and H . Also, the total computation
time needed for our method scales roughly linearly with the
number of samples. The average number of CGD iterations
vs. the number of samples M is shown in figure 4. By using
the fast and approximate method for applying G + δI, CGD
takes slightly more iterations to converge.

Fig. 2. Plot of the time needed for each of the three methods to compute
the reconstructed signal on a uniformly spaced grid of M points from the M
nonuniformly spaced samples.

Fig. 3. Plot of the relative RMS error of the reconstructed signal for each of
the three methods. All three methods yield a nearly identical reconstruction
error for the values of M for which all of them could be tested.
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