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Abstract—This paper considers the problem of estimating a
nonnegative low-rank matrix from noisy Poisson observations of
all or a subset of its entries. Specifically, we analyze an estimator
defined by a constrained nuclear-norm minimization program. We
derive a high-probability upper error bound (in the Frobenius
norm metric) that depends on the matrix rank, the fraction of
entries observed, and maximal row and column sums of the true
rate matrix. We furthermore show that this bound is (within a
constant) minimax optimal in classes of matrices with low rank
and bounded row and column sums.

I. INTRODUCTION

In this paper, we consider the problem of estimating a non-
negative matrix M ∈ Rm×n given independent observations
distributed according to Poisson(Mij) for (i, j) ∈ Ω, where Ω
is a (not necessarily strict) subset of {1, . . . ,m}×{1, . . . , n}.
If we do not make an observation for every entry of a matrix,
the recovery problem is, in general, ill-posed if we do not
make any assumptions about what kind of matrix we expect to
recover. A standard assumption for this type of problem is that
the unknown matrix M is low-rank; i.e., the dimension of the
spans of the columns and rows of M is much smaller than the
actual numbers of columns and rows. This assumption greatly
reduces the number of degrees of freedom in the model, making
the recovery problem more tractable. Even if we do observe
every entry, we can exploit the structure of the model to reduce
the error due to Poisson noise.

While the problems matrix completion and denoising have
received a significant amount of attention in the settings of
Gaussian noise and of small, bounded (in `2) perturbations
(e.g., [1]–[3]), the case of Poisson noise has received compar-
atively less attention. The Poisson noise model is often much
more natural in applications where the observations arise via
some form of counting process. The ability to recover (or de-
noise) a low-rank signal from noisy, count-based observations
is useful in many situations; we briefly mention two examples.

One widespread application is imaging. This includes con-
ventional cameras (which often suffer from noise in low light or
with short exposures), but it also includes 3-D imaging meth-
ods such as X-ray computed tomography (CT) and positron
emission tomography (PET), which, in medical imaging, would
greatly benefit from an improved noise/radiation dose tradeoff.
In these scenarios, the Poisson noise model is natural because
the observations consists of counts of particle (e.g., photon)
arrivals at a detector. In many of these settings, such as when
observing a periodic or slowly-varying sequence of images, a
low-rank assumption on the underlying data is natural (see,
e.g., [4] for an overview of low-rank modeling in image
applications).

Another interesting application is topic modeling, which is a
common form of dimensionality reduction for text documents.

In this case, our observations consist of counts of word
occurrences in a corpus of documents. If we suppose that
these documents can be decomposed according to a small set
of topics, and that within each topic documents will exhibit
similar word occurrence counts, then a low-rank assumption
on the word-count matrix is natural. For example, the popular
PLSI model [5] uses similar assumptions. We note, however,
that existing algorithms have no guarantees of performance.

A. Summary of main results

In our analysis, we assume a Bernoulli sampling of the
matrix entries: i.e., the events {(i, j) ∈ Ω} are independent
with probability p ∈ (0, 1], and the observed Poisson random
variables are independent conditioned on Ω. Note that taking
p = 1 handles the case in which we observe every entry of the
matrix.

Let AΩ : Rm×n → RΩ denote the entry-wise sampling
operator given by (AΩ(Z))(i, j) = Zij for (i, j) ∈ Ω. Given
Poisson observations X ∼ Poisson(AΩ(M)), we consider an
estimator of the form

M̂δ = argmin
M′∈[0,∞)m×n

‖M ′‖∗ s.t. ‖A∗Ω(X)− pM ′‖ ≤ δ, (1)

where δ > 0 is a parameter which will be chosen so that
the true rate matrix M is feasible. Here, for a matrix A, ‖A‖
and ‖A‖∗ denote the operator norm and nuclear norm of A,
respectively. Note that (1) is a convex optimization problem
(a semidefinite program, to be precise), so M̂δ is tractable to
compute.

Denoting by ‖A‖F the Frobenius norm of a matrix A,
Theorem 1 states that, if M has rank r, and δ is properly
chosen, we have, with high probability,

‖M − M̂δ‖F .
√
r

p
σ̃(M) + logarithmic terms, (2)

where

σ̃(M) = max
i

√∑
j

Mij + (1− p)M2
ij

+ max
j

√∑
i

Mij + (1− p)M2
ij .

In many situations (see Section II-C), the logarithmic term is
negligible, so we can approximate this result by the bound

‖M − M̂δ‖F .
√
r

p
σ̃(M). (3)

We then use two standard methods to find lower bounds on
the minimax risk of any estimator in classes of matrices with
bounded row and column sums. These results (Theorems 2



and 3) can be summarized as follows: over all nonnegative
matrices M such that rank(M) ≤ r, and σ̃(M) ≤ σ, we have

inf
M̂

sup
M

EM‖M − M̂‖F &
√
r

p
σ

Thus, Theorem 1 is optimal (up to a multiplicative constant
and an additive logarithmic factor) for this class of matrices.

To gain a more intuitive understanding of our result, it is
helpful to examine the formula for σ̃. For simplicity, assume,
without loss of generality, that the row sums dominate the
column sums, so that

σ̃ ≈ max
i

√∑
j

Mij + (1− p)M2
ij .

The two terms inside the sum have different roles. The first
term (Mij) corresponds to the variance of the Poisson random
variables. Indeed, if we take p = 1, this is the only term, so
our result has the form

‖M − M̂δ‖F .
√
r

max
i

√∑
j

Mij

 .

If we do not impose any structure on the model, the maximum
likelihood (and least-squares) estimate is M̂MLE = X , which
has risk

E‖M − M̂MLE‖2F =
∑
i,j

Mij .

If every row of M has approximately the same sum, the
estimate M̂δ improves on M̂MLE (in squared Frobenius error)
by a factor of approximately r/n. If the sums of the rows of M
differ significantly, the improvement is smaller. However, this
should not be too surprising—if the variance in the problem
is already concentrated into a smaller sub-matrix, we are
effectively solving a smaller problem, and hence the low-rank
assumption is less restrictive and, therefore, less helpful.

The second term (of the form (1 − p)M2
ij) in the formula

for σ̃ corresponds to the inherent difficulty in estimating the
values of a matrix due to the fact that we do not observe every
entry. This term in the lower bound applies regardless of the
noise model, even when there is no noise. This might seem to
contradict existing exact noiseless matrix completion results,
but we note here that such results assume additional structure
(incoherence of the row and column spaces) beyond what we
are assuming here. In fact, the matrices used in the proof of
Theorem 3 are highly coherent.

Although this second error term is necessary for general
matrices, an interesting open problem is whether it could be
entirely removed (leaving only the variance term) when we
assume additional structure (such as incoherence) on the true
rate matrix. Such a result would be a bridge between existing
noisy and noiseless matrix completion literature; the existence
of exact completion for the noiseless case implies that current
results for the noisy case (including this paper) become useless
when the signal-to-noise ratio goes to infinity. An exception
is [3], but we note that this approach is not without its own
drawbacks as this approach leads to error rates which are
suboptimal with respect to the rank r.

B. Comparison to prior work

There are several categories of existing literature to which
we can compare our results. Some papers explicitly consider
Poisson noise, using a maximum-likelihood framework. Cao
and Xie [6] consider nuclear-norm penalized maximum likeli-
hood for matrices contained in a nuclear norm ball (rather than
exactly low-rank matrices). This approach uses an empirical
process argument to bound the Kullback-Leibler divergence
between the true and predicted distributions. This argument
requires a Lipschitz condition on the log-likelihood function,
which, for the Poisson distribution, requires imposing a lower
bound on the rates. Soni, Jain, Haupt, et al. [7] and Soni and
Haupt [8] consider a penalized maximum likelihood estimator
from a carefully-chosen finite set of candidates (which is
exponentially large in the size of the problem and hence com-
putationally intractable). The matrices considered have a non-
negative low-rank factorization (with a particular emphasis on
the case when one factor is sparse). They use an information-
theoretic argument to bound the expected error in terms of
Bhattacharyya distance. The result of [7], which applies to
matrix completion, requires imposing a lower bound on the
rates, while that of [8], which considers only denoising, does
not. All three papers find an upper bound on Frobenius error in
terms of the statistical error metrics that they originally bound.

Other, more general approaches, are designed specifically
with Frobenius-norm error in mind. One class of methods
uses “restricted strong convexity” arguments, introduced by
Negahban and Wainwright [1]. These methods rely on ap-
proximating the Frobenius norm in certain restricted classes
of matrices using only samples of the entries. Another class of
methods, which was first introduced by Koltchinskii, Lounici,
and Tsybakov [2], served as the inspiration of the approach
we take in this paper; the estimator in their paper (which is
somewhat more general than ours) is similar to a nuclear-norm
regularized least-squares estimate, but with certain random
terms replaced by their known expectations. These two classes
of methods rely heavily on bounding the operator norms of two
different kinds of random matrices that arise from the sampling
pattern.

An interesting blend of techniques can be seen in the
works of Lafond [9] and Gunasekar, Ravikumar, and Ghosh
[10], who combine some of the general approaches mentioned
above with maximum likelihood estimation for exponential
families of distributions. These methods, like those in [6] and
[7], are difficult to apply to the Poisson distribution without
imposing a lower bound on rates because, as the mean λ of
the distribution goes to 0, the “natural parameter” log λ goes
to −∞, whereas the methods in [1] and [2] generally require
parameters to be bounded. They also require (approximate)
low rank in the matrix of natural parameters; in the Poisson
case, this is equivalent to assuming a bound on the rank of
the matrix [logMij ] of elementwise logarithms of the means,
which is somewhat non-standard, and certainly not the same
as assuming a bound on the rank of the original matrix M .

Most of the papers mentioned above do not find error bounds
which explicitly depend on the “true” rate matrix; rather, they
find uniform upper bounds for classes of structured matrices
with uniform upper (and, sometimes, lower) bounds on the



entries. To compare our results directly to this literature, we
consider what we obtain when we only impose a uniform upper
and lower bounds (by, say λmax and λmin) on the matrix
entries. The approximate bound of (3) reduces to

‖M̂ −M‖2F . (λmax + (1− p)λ2
max)

rm

p
,

where we have assumed, without loss of generality, that m ≥
n. Previous results show similar error rates in terms of matrix
dimensions for exactly low-rank matrices. For example, [7]
establishes a bound of

E‖M̂ −M‖2F .
λ3

max

λmin

rm

p
logm,

which provides a similar dependence on r, m, and p, but with
an additional logarithmic term and a worse dependence on the
minimum and maximum matrix values. In a slightly different
setting, [6] shows that for matrices in the nuclear norm ball of
radius λmax

√
rmn (which is a convex relaxation of the exact

low-rank constraint), we instead obtain (ignoring logarithmic
terms and a complicated but severe dependence on λmax and
λmin) an error bound of

‖M̂ −M‖2F .
√
rnm
√
p

,

where p is now the number of samples for entry in a uniform-
at-random sampling model. The different dependence on r and
p is interesting, but, if one compares it to results in linear
regression over `1 balls (see, e.g., [11]), the rate given is
perhaps not surprising.

Because this paper studies minimax error rates in Frobenius-
norm error, it uses techniques which do not rely heavily on
the Poisson nature of the noise; the methods we present for
upper bounding the error would apply to any problem with sub-
exponential noise, and we could similarly find matching lower
bounds in problems with many different noise distributions.
For this specific error metric, this gives us an advantage over
more distribution-specific approaches such as [6], [7], [9], [10],
in part because we do not have to approximate the Frobenius
norm error by a statistical divergence measure or by a norm
in a transformed parameter space. Our results also do not
suffer from the fact that a Poisson distribution’s likelihood
function is ill-conditioned for very small rates. In addition, our
results avoid a multiplicative logarithmic factor in the error
upper bounds (replacing it with an additive factor that is often
negligible); this achievement is almost entirely due to the use
of recent results in bounding the operator norm of a random
matrix (such as [12]).

Finally, much of the previous literature in the Poisson case
(from those mentioned above, [6], [7], [9]) finds lower bounds
on minimax risk in certain classes of matrices. Although these
lower bounds have the same large-scale error rate (in terms
of the rank and dimensions of the matrix and the number of
samples) as the corresponding upper bounds, they differ from
the upper bounds by factors that are logarithmic in the problem
size and that depend on the ratio of largest to smallest allowable
rates. To our knowledge, the results in this paper are the first
for noisy low-rank matrix completion in which the minimax
rate for large classes of matrices is found to within a universal
constant.

We add a final caveat to our results by noting that ‖M̂ −
M‖F might not always be the most appropriate error metric;
for example, there is a much larger difference qualitatively (and
quantitatively, if we use an appropriate statistical divergence)
between Poisson distributions of means 0 and 10 than between
Poisson distributions of means 100 and 110. Further inves-
tigation of distribution-specific methods (such as maximum
likelihood) that yield bounds in more statistically-motivated
metrics is thus certainly warranted.

II. THEOREM STATEMENTS AND PROOF SKETCHES

A. Upper bound

In this section, we present and sketch the proof of our main
result, which is an upper bound on estimator error. Complete
proofs will appear in a future publication.

Theorem 1. Let M be a non-negative m×n matrix with rank
r. Let λmax = maxijMij , and let

σ̃ = max
i

√∑
j

Mij + (1− p)M2
ij

+ max
j

√∑
i

Mij + (1− p)M2
ij .

Suppose Ω ⊂ {1, . . . ,m} × {1, . . . , n} is chosen according
to a Bernoulli sampling model with sampling probability p,
and suppose, conditionally on Ω, X ∼ Poisson(AΩ(M)). Set
ε ∈ (0, 1/2) and choose δ such that

δ ≥2
√
pσ̃ +

8ε√
mn

+ C max

{
λmax, 4 log

2mn

ε

}√
log

m ∨ n
ε

,

(4)

where C is a universal constant. Let M̂δ be the solution of
(1). With probability at least 1− 2ε,

‖M̂δ −M0‖F ≤
4
√

2rδ

p
. (5)

The result follows from a series of lemmas. The first step in
upper bounding the error is the following (deterministic) result:

Lemma 1. Suppose M is a rank-r matrix such that ‖A∗Ω(X)−
pM‖ ≤ δ. Then

‖M̂δ −M‖F ≤
4
√

2rδ

p
. (6)

The proof is a standard argument based on the optimality of
M̂δ for (1) and the feasibility of M .

To bound the error of our estimator, it remains to find an
upper bound on the random operator norm ‖A∗Ω(X) − pM‖
when X ∼ Poisson(AΩ(M)). We will use the following
fundamental lemma, which was originally proved by Bandeira
and van Handel [12] and appears with a slightly improved
constant in [13]:

Lemma 2 (Theorem 4.9 and Remark 4.11 in [13]). Let X be a
random m×n matrix whose entries are independent, centered,
and almost surely bounded in absolute value by a constant b.
Let

σ = max
i

√∑
j

EX2
ij + max

j

√∑
i

EX2
ij .



Then

P(‖X‖ ≥ 2σ + t) ≤ (m ∨ n) exp

(
− t2

C1b2

)
,

where C1 is a universal constant.

Poisson random variables are clearly unbounded, so
Lemma 2 does not directly apply. The following technical
lemma (which is proved by considering truncated matrix el-
ements) allows us to extend the result to the case of random
variables with sub-exponential tails.

Lemma 3. Let X be a random m×n matrix whose entries are
independent and centered, and suppose that for some v, t0 > 0,
we have, for all t ≥ t0,

P(|Xij | ≥ t) ≤ 2e−t/v.

Let ε ∈ (0, 1/2), and let

K = max

{
t0, v log

2mn

ε

}
.

Then

P

(
‖X‖ ≥ 2σ +

εv√
mn

+ t

)
≤ (m ∨ n) exp

(
− t2

C1(2K)2

)
+ ε,

where σ and C1 are the same as in Lemma 2.

To apply this result, we need a subexponential tail bound
for the Poisson distribution.

Lemma 4. Let X ∼ Poisson(λ). Then

P(X − λ ≥ t) ≤ exp

(
− t2

2(λ+ t/3)

)
.

For t ≥ λ,

P(X − λ ≥ t) ≤ e−3t/8.

The first inequality can be established by approximating the
Poisson distribution with mean λ as the sum of k Bernoulli ran-
dom variables with mean λ/k, applying Bernstein’s inequality,
and taking k →∞. The idea for this argument was suggested
by an exercise in [14].

Going back to our original problem, we need to bound the
operator norm of Z = A∗Ω(X) − pM . Note that since we
are using a Bernoulli sampling model, the entries of Z are
independent. Let λmax = maxi,jMij . Note that for every
(i, j), EZij = 0, and it is easily verified from Lemma 4 that
for t ≥ 2λmax, P(|Zij | ≥ t) ≤ e−t/8.

To calculate σ from Lemma 2 in terms of p and M , we note
that

var(Zij) = p var(Xij) + p(1− p)(EXij)2

= pMij + p(1− p)M2
ij ,

so we can calculate σ =
√
pσ̃.

B. Minimax lower bounds

In this section, we present results which show that the rate
in (3) is optimal (within a multiplicative constant) in the sense
of minimax risk. σ̃ is partially determined by the maximal row
and column sums of the rate matrix M , which we can think
of as the maximal variance of any row or column (without
sampling a subset of the entries). Our first lower bound shows
that we cannot improve on this term.

Again, complete proofs will appear in a future publication.

Theorem 2. Let r, k, and `, be positive integers, and take
m = rk, n = r`. Let λmax ≥ 1/8`p, set σ2

1 = kλmax, and
let

S1 =

{
M ∈ [0, λmax]m×n : rank(M) ≤ r,

√
max
i

∑
j

Mij +

√
max
j

∑
i

Mij ≤ 2σ1

}
.

Then, under a Bernoulli sampling model with sampling prob-
ability p,

inf
M̂

sup
M∈S1

PM

(
‖M̂ −M‖F ≥

√
rσ1

8
√

2p

)
≥ 1

2
− 8 log 2

m ∨ n .

The proof is a standard argument by Fano’s method (see,
e.g., [15], [16]), using block-diagonal matrices whose rows
each take one of two values.

This first theorem relies on the fact that the observations
are (conditionally) Poisson; the next result, which provides the
second part of a matching lower bound to (3), does not depend
on the conditional distribution of the observations, and instead
shows a fundamental limit in inferring missing matrix entries.

Theorem 3. Take again m = rk, n = r`. Set σ2
2 = kλ2

max.
Let

S2 =

{
M ∈ [0, λmax]m×n : rank(M) ≤ r,

√
max
i

∑
j

M2
ij +

√
max
j

∑
i

M2
ij ≤ 2σ2

}
.

Suppose p ≥ 1
2(k∧`) = r

2(m∧n)
. Then, under a Bernoulli

sampling model with probability p (with any conditional dis-
tribution on the observations),

inf
M̂

sup
M∈S2

E‖M̂ −M‖2F ≥
rσ2

2

8
max

{
1

2

⌊
1

2p

⌋
, 1− p

}
≥ 1

64

1− p
p

rσ2
2 .

The proof is by Assouad’s method (again, see, e.g., [15] or
[16]), using a “hypercube” of matrices similar to that in the
proof of Theorem 2. We could also use a more complicated
argument by Fano’s method to get another high-probability
lower bound on error (with a somewhat worse constant).

C. When do the upper and lower bounds match?

Within multiplicative constants, the lower bounds of Theo-
rems 2 and 3 match the approximate upper bound of (3). To



determine whether this proves optimality, we must consider
when the approximation in (3) is accurate.

If we look at the classes of matrices in Theorems 2 and 3,
it can easily be shown that the term

√
pσ̃ dominates (4) if

p &
r

m
max

{
logm,

log3 m

λ2
max

}
If λmax & logm, this reduced to the condition p & r logm

m
,

which is a common assumption in the matrix completion
literature.

III. CONCLUSION AND FUTURE WORK

In this paper, we have derived an upper bound in Frobenius
norm error for an estimator for Poisson matrix completion,
and we have derived a minimax lower bound that matches this
upper bound (within a universal constant) for many classes of
nonnegative rate matrices. The estimator we use is computa-
tionally tractable, and requires significantly fewer assumptions
on the underlying matrix than previous results in the literature.
Significantly, we impose no lower bounds on the entries of the
underlying matrix. This is crucial in many applications (such
as topic modelling) where zero or very small Poisson means
can be relatively common.

Because we have found upper and lower error bounds in
Frobenius norm, the only theoretical improvement remaining
for this model and error metric is to try to relax the conditions
under which the bounds match (although, as we have seen,
they are not too restrictive now). This could potentially come
about by reducing the logarithmic term in (4) and/or by finding
a logarithmic term to add to the minimax lower bounds.

It would also be interesting to extend the results presented
here to matrices that are not exactly low-rank, but are instead
”approximately low-rank;” for example, we could consider
matrices which are contained in Schatten balls (which, for
q ∈ [0, 1], are sets of matrices for which

∑
i σ

q
i ≤ R, where

{σi} is the set of singular values). As mentioned previously,
Cao and Xie [6] used the Schatten 1-norm (q = 1, or nuclear
norm ball); Negahban and Wainwright [1] also examined these
classes of matrices.

Another avenue of research would be to examine struc-
tured Poisson rate estimation under different, more statisti-
cally motivated error metrics. Maximum likelihood methods
seem more suitable here than least-squares, but analysis of
maximum likelihood estimators has proved difficult for the
reasons outlined in Section I-B. It is not clear what kind of
structure would be relevant in a different error metric. Low-
rank structure seems to work well with a least-squares error
framework, but there is a priori not much reason to think that it
would work similarly well for another metric; for example, the
Bhattacharyya distance, for Poisson distributions, is equivalent
to (squared) `2 distance between the square roots of the rates.
However, the element-wise square root of a low-rank matrix
is not, in general, low rank. Thus, this approach may not
immediately bear much fruit. However, an analysis of Poisson
matrix estimation under alternative error metrics remains an
important area for future research.
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