Accelerated first-order methods

In the last lecture we provided convergence guarantees for gradi-
ent descent under two different assumptions. Under the stronger
assumption that f was both M-smooth and strongly convex with
parameter m, we showed that convergence to a tolerance of € was
possible in O(2log(1/€)) iterations. Under the weaker assumption
where we only assume that f is M-smooth, we were able to show
that O(M/€) iterations would be sufficient.

In this lecture we show that there are small changes we can make
to gradient descent that can dramatically improve its performance,
both in theory (resulting in improvements on the bounds above)
and in practice. We will talk about two of these here: the heavy ball
method and Nesterov’s “optimal algorithm.” Both of these strategies
incorporate the idea of momentum, although in subtly different ways.

Momentum

One way to interpret gradient descent is as a discretization to the
gradient flow differential equation

The solution to (1) is a curve that tracks the direction of steep-
est descent directly to the minimizer, where it arrives at a fixed
point (where V f(x) = 0). To see how gradient descent arises as a
discretization of (1), suppose we approximate the derivative with a
forward difference

_x(t+h)— =)

ZB/(t) ~ h )
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for some small h. So if we think of ;. and x; as closely spaced
time points, we can interpret

é(wl-ﬁrl —x;) = =V f(x),

as a discrete approximation to gradient flow. Re-arranging the equa-
tion above yields the gradient descent iteration &y, = &, —a'V f(x}).

The problem is once we perform this discretization, the path tends
to oscillate. One way to get a more regular path is to consider an
alternative differential equation that also has a fixed point where
V f(x) = 0 but also incorporates a second-order term:

pa’(t) + 2'(t) = =V f(z(t)). (2)
From a physical perspective, this is a model for a particle with mass
1 moving in a potential field with friction. This results in trajectories
that develop momentum (a heavy ball will move down a hill faster
than a light one in the presence of friction). In the case where p = 0
we recover (1), but in general the inclusion of the mass term above
will result in a more accelerated trajectory towards the solution.

We can discretize the dynamics as before by setting

Tit1 — 2T + Tj Ty — Tj—
z'(t) ~ 2 PR () e 2T
h hy
If we plug these into (2) and rearrange we obtain an update rule of

the form

X1 = Tr + Br(Tr — 1) — iV f (), (3)
where 8 = hy/hyu and o = hy/p. This is the core iteration for the
heavy ball method, introduced by Polyak in 1964 | ]. The

x;, — x;,_, term above adds a little bit of the last step x;, — ;4
direction into the new step direction x;.; — @) — this method is also
referred to as gradient descent with momentum.
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Convergence of the heavy ball method

In the previous lecture we showed that if f(ax) is M-smooth and
strongly convex, then we can obtain a bound of the form

f@rn) — flx") < (1-—-1>k(f(wo)—-f(w*ﬂ,

K

where k = M /m is the “condition number.” From this we can show
that we can guarantee

*

f(@x) — f(a")
f(xo) — flz*)

<e€

provided that

L log(l/e)
— —log(l —1/k)
Using the inequality log(1 — z) < —x we can replace this with the

simpler bound
k> rlog(1/e).

In the technical details at the end of these notes we also provide
an alternative argument for the convergence of gradient descent that
begins by showing that

* R—1 ¢ *
e~ 2l < (57 ) llzo - @7l

Using a similar argument as before, we can use this to show that

s — 2],

|y — x*|[2 ~

provided that
k > klog(1/e).
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The heavy ball method significantly improves on this result in terms
of its dependence on k.

Specifically, under the same assumptions as before (M-smoothness
and strong convexity), in the technical details we show that for the
heavy ball method with

+
(VM +/m)?

we have the bound

o —

m—m>2

and [ = <m+m

k
* \/E_l *
o=l 5 (Yg) s =l

This can be translated into a guarantee that says

s — 2],

<e when k2 vk log(1/e).

|z — |2

The difference with gradient descent can be significant. When k =
102, we are asking for & 100log(1/€) iterations for gradient descent,
as compared with ~ 10log(1/¢) from the heavy ball method.
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Conjugate gradients

If you are familiar with the method of conjugate gradients (CG),
some of this may feel vaguely familiar. If you have never heard of CG,
[ highly recommend reading through the tutorial “An introduction to
the conjugate gradient method without the agonizing pain” | ).

The CG method was developed for minimizing quadratic functions
of the form f(x) = jx"Qx —x"b. While it is normally presented in
quite a different fashion, it ultimately boils down to being a variant of
the heavy ball method that is particularly well-suited to minimizing
quadratic functions. To see this connection, note that the core CG
iteration can be expressed! as

d, = =V f(x;) + Bidy—s

Ty 1 = Ty + apdy,

where we start with dy = —V f(xy). In CG, the 3, are set as

PN G
IV f (2r-1)I]5
If f(x) is a quadratic function this choice ensures that at each itera-
tion dj, is conjugate to dy, ..., d;_;. We won’t worry about saying

more about this beyond the fact that this is a good idea if f(x)
1s quadratic. Once (, is fixed, ay, can then be chosen using a line
search. Again, if f(x) is quadratic, there is a simple closed form
solution for this (which we have previously derived).

You will typically see this algorithm described specifically for the quadratic
case, in which case V f(x) = Qx — b and these calculations are carefully
broken up to re-use as many calculations as possible and avoid any un-
necessary matrix-vector multiplies, so it may initially look quite different.
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While CG is parameterized differently than the heavy ball method
as described in (3), they are fundamentally the same. To see this
note that we can also write

Ty = T, + oy (—V f(x) + Bedy—r)

L — Lp-1
= T — OZka(QZ‘k) + Oékﬁk&—
k-1

This is precisely the same iteration as (3), but with a slightly different
way of parameterizing the weight being applied to the momentum
term.

If you are trying to minimize a quadratic function, CG is the way
to go. The convergence guarantees you get for CG when minimizing
a quadratic function are just as good (but not actually better than)
what you have for the heavy ball method, but you don’t need to
know anything like Lipschitz or strong convexity parameters (which
would correspond to the maximum and minimum eigenvalues of Q)
in order to choose the «y, and ;.

However, if you are trying to minimize anything else CG is not
necessarily a good choice. The choices for oy, and ;. are highly tuned
to the quadratic setting and can yield unstable results in general.
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Nesterov’s “optimal” method

In the case where f is strictly convex, you can come up with examples
that show that the convergence rate of the heavy ball method can’t
be improved in general. For non-strictly convex f, the story is more
complicated.

Recall that we also have a convergence result for gradient descent in
the case where we only assume M-smoothness. In particular, last
time we showed that for a fixed step size « = 1/M,

fla) — fla') < 3 ey — a3

Thus, to reduce the error by a factor of € requires

M
k> —
2€
1terations.

In 1983, Yuri Nesterov proposed a slight variation on the heavy ball
method that can improve on this theory, and often works better in
practice | |.# Specifically, recall the heavy ball method, which
can be represented via the iteration:

Py, = B (T, — x)—1)
Ty = T, + Py — 4V f(x),
where we start with p, = 0. Nesterov’s method makes a subtle, but
significant, change to this iteration:
Py = B (T, — T}—1)
e e ()
Tp1 = Ty + Py — 4V f(Tr + Py).

*Note that this method remained to a large extent unknown in the wider
community until his 2004 publication (in English) of | ].
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Notice that this is the same as heavy ball except that there is also a
momentum term inside the gradient expression. With this iteration,
we will show that (for a suitable choice of oy and Sy)

* M *
fla) = fla) 5 o5 llm — 21
meaning that we can reduce the error by a factor of € in
1

k> —
N\/E?

iterations. When € ~ 107, this is much, much better than 1/e.

Nesterov’s method is called “optimal” because it is impossible to beat
the 1/k? rate using only function and gradient evaluations. There
are careful demonstrations of this in the literature (e.g., in | ).

Note that in practice, ay, can be chosen using a standard line search,
and a good choice of 5 (both in practice, and as we will show below,
in theory) turns out to be

kE—1
b= 5)

This tells us that we should initially not provide much weight to the
momentum term, which makes intuitive sense as the initial gradients
may not be pushing us in the right direction, but as we proceed we
should have increased confidence that we are headed in the right
direction and increase how much weight we place on the momentum
term.

Significantly, note that in setting (5, we do not need to know any-
thing about the function we are minimizing (such as strong convexity
parameters). This represents an important advantage compared to
the heavy ball method described above.
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Convergence analysis of Nesterov’s method

Analyzing the convergence of Nesterov’'s method under the assump-
tion of M-smoothness is a little more involved than for gradient
descent, but the overall approach is the same and contains many of
the same elements, so we will start by recalling the main building
blocks that we used in analyzing gradient descent.

Consequences of convexity and M-smoothness
First, we recall some basic facts that hold for any @,y € dom f.
Since f is convex we have

fly) = flx)+(y — =, Vfx)). (6)

Since f is M-smooth we have

fly) < fl@) + fy— 2. Vi) + 5 Jy—alf  (7)
As a consequence of (7) (by setting y = & — -V f(x)), we have that
for any @,
\Y4 \Y 2
f(o- ) < poy - L2 ®)

Combining this with the upper bound on f(a) that you can obtain
by rearranging (6), we obtain

(o V@

V)]
o .

i (9)

)Sf@ﬂ(w—uvﬂ@>

As we will see below, this inequality is the foundation of our analysis
of both gradient descent and Nesterov’s method. By plugging in
different choices for y (such as @) or &*) we can obtain both lower
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bounds on how much progress we make when we take a gradient
step as well as upper bounds on how far away we are from a global
optimum.

Convergence of gradient descent
Recall that in our analysis for gradient we assume a fixed step size
a = 1/M, resulting in an update rule of

T — o — Vf(x)
k1 k IV
Thus, setting & = x;, and y = x* in (9) implies that

M
f(@i1) < f@") + M@y — ", @ — @) — 7\\% — s

From this, if we define 0, = f(xy) — f(*) and do some algebraic
manipulation (see the previous notes) we get a bound of the form

M
Ops1 < > (Jlex — 2|5 — llre — 27)3) -

This yields the telescopic sum

k—1 k—1

M
> < 3 (3 o= 1 s - 1)
1=0 1=0

M

=~ a3 e~ 2)
M

< 7”"”0 —z"[|3.

The proof for gradient descent concludes by noting that

Z(SZ“ = Zk”wo — & H2
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Convergence of Nesterov’s method
We will follow a similar argument to analyze Nesterov’'s method. We
will again take o = 1/M, but we will see that the analysis suggests
a natural choice for ;. With this choice of oy, the main iteration
from (4) is
1

L1 = T + Py — va(mk +Py)-

It will be convenient to define

1
g, = —MVf(ka + ),

so that the main iteration becomes simply x,1 = T + P, + g,
With this notation, by setting & = x; + p, in (9) we obtain the
bound

M
f(®r) < fly) — M(zr — P — Y, 9;) — 7“%”% (10)

If we set y = &* in (10) and again let §; denote f(xy) — f(a*) we
obtain M

Opr1 < 7 (2<€I3* — Ly — Pk>9k> - ||gk||3) . (11)

In our analysis of gradient descent, we then tried to rearrange an
analogous bound to obtain a telescopic sum, but that doesn’t quite
work here. Instead we will need to combine (11) with another bound.
Noting that 6, — 641 = f(@x) — f(@ry1), we observe that setting
y = x; in (10) yields

M
O — 01 > o (2(py, g) + Hngﬁ) : (12)

We now consider the inequality formed by adding together (11) and
1 — Ay times (12) (where A, is something we will choose later, but
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satisfies A\, > 1, so that this multiplication switches the direction of
the inequality). The left-hand side of the sum will be

Ors1 + (1= Ae)(Or = 0rr1) = Mpyr — (Ap — 1)0p.
The right-hand side of the sum will be

M.
- 2" =z —p+ (1= M)pegi) — lgills + (1= Mo)llgill2)
M, .
= o (2<$ — Ly — )\k:pkagk> - )‘ngkHS)
M . 2
= o (2@ =@ = pi Megi) = [hugil)
M * 2 * 2
— TN (Jlx* =z — Mepillz — |2 — 2 — Mepr — Aegills)

where the last equality follows from the easily verified fact that
2(a,b) — [|bll5 = |la|3 — |la — bl|5. If we make the substitution
uy, = T, + \;P;., then combining these yields the inequality

M * *
Nk — (Af = A)dy, < - (="~ upll; — lz* — w, — Nigyl3) -
(13)

We will now show that if we choose A\, and (3, appropriately, (13) will
yield a telescopic sum on both sides. This will occur on right-hand

side of (13) if
Uy + ApG) = Upq1.

Noting that py. = Br1(®ri1 — @) = Brena(py + gy), we can write
Upy1 = Thy1 + Apr1DPp

=T +P.t+9. T )\k+15k+1(pk + gk)
=z, + (1 4+ N1 Bir1) (P + 91)-
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Thus, to make w1 equal to u,+ Apg, = .+ A\(pr+g,.) we simply

need to have

A — 1
Aii1

For (3, satisfying (14), if we sum (13) from ¢ = 0 to k — 1 we thus
have

A =1+ N1 Bir1 = B = (14)

> Nbia — (A = X)d; < o (1" — woll3 — fl&* — will3)
1=0
M *
Sawm—uﬂg
M *
:Eﬂw—wﬂg (15)

Next, one possible approach is to choose the A, so as to obtain a
telescopic sum on the left-hand side of the inequality as well. This is
the approach you will see most often in analyzing the convergence of
Nesterov’s method, but it is a little involved and leads to a recursive
formula for A;, (and hence f},) instead of a simple closed form expres-
sion. Instead we will choose a simpler A\, that yields essentially the
same bound.

Specifically, suppose that we set A\, = (k + 2)/2. First, note that
from (14) this yields

B2
Bk—i-l: 2]<:+1 - )
k+3

2

which coincides with the rule for setting 5, given in (5). Next, note
that we can write

k—1 k—1
D NG — (A =)0 = (A= Ao+ Ap 16+ > (AT = AT+ N6,
1=0 i=1

65

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 23:28, February 8, 2026



Plugging in \; = (i 4+ 2)/2 yields

k-1
Z Ajbi — (A = Ao,
i=0

+

k+1\° 1
(—) O+ 7 D0

E+1)\°
()

where the inequality follows since §; = f(a;)— f(x*) > 0. Combining
this lower bound with (15) yields

k4 1\ M.
(F57) 6= Gl il

|V
4+

or equivalently
2M
_ *\ <

which is exactly the O(1/k?) convergence rate we wanted.

l* = ol
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