Convergence of gradient descent

Here we will prove convergence guarantees for gradient descent,
i.e., the version of our iterative algorithm where we set

resulting in the update rule

Ty =Ty — V[ (wk) -

It is hard to say much about the convergence properties of this ap-
proach for arbitrary convex functions. However, if f satisfies certain
“regularity conditions”, then we can get very nice guarantees, even
for a fixed step size. Here we will look at two different regular-
ity assumptions on f, and translate them into convergence rates.
Throughout, we will assume that f is differentiable everywhere.'

Smoothness

First, we will see what we can show if we assume that f is smooth
in a certain sense. Qualitatively, we would just like to assume that
the gradient changes in a controlled manner as we move from point
to point. Quantitatively, we will assume that f has a Lipschitz
gradient. This means that there exists an M > 0 such that

V() =V iyl < Mz =yl (1)

'Methods for nondifferentiable f(x) are also of great interest, and will be
covered later in the course. These methods are not much more involved
algorithmically (although, you obviously will have to replace the gradient
with something else), but they are slightly harder to analyze.
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for all &,y € dom f. We will say that such a function is M-smooth
or strongly smooth.

In the homework you will show that f obeying (1) is actually equiv-
alent to saying that

fly) < fla) + (g~ Vi) + Sy —al} (@)
for all ¢,y € dom f.

This provides some intuition for what kind of structure the Lipschitz
gradient condition imposes on f. Recall that for any convex function,

we have that
fly) = fl@) +(y — =z, Vf(),

so if f is convex, then at any point & we can bound f from below
by a linear approximation. If f has a Lipschitz gradient, (2) but we
can also bound it from above using a quadratic approximation.

In the next homework you will also argue that (2) is equivalent to
the assumption that 4[|z ||3 — f(2) is convex. In the case that f is
twice differentiable, it is not hard to use this fact to show that (2) is
equivalent to

Vif(z) < MT,

i.e., that the largest eigenvalue of the Hessian is bounded by M for
all . Note, however, that the Lipschitz gradient condition and the
analysis below does not require f to be twice differentiable.
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Convergence of gradient descent: ) -smoothness

Now, let’s consider running gradient descent on such a function with
a fixed step size’ a;, = 1/M. Recall that the central gradient
descent iteration is just

1

Lh+1 = Lk — va(wk)

From our assumption that f is M-smooth, we know that f satis-
fies (2), and thus plugging in y = @, 1, we obtain

2

Fl@een) < @) + (=3 @), Vo)) + 5
= flaw) ~ TV f @) + iMHme)HQ
= flw) — s IV F@l; 3)

|va ;)

2

Note that (3) shows that f(x,.1) < f(a;) as long as we are not
already at the solution, so we are at least guaranteed to make some
progress at each iteration. In fact, it says a bit more, giving us
a guarantee regarding how much progress we are making, namely
that

Fl@) — fln) > IV f@)l

so that if the gradient is large we are guaranteed to make a large
amount of progress.

>This requires that you know M, which may not be possible in practice. In
fact, if @ < 1/M you will still get convergence, it will simply be slower.
Moreover, it is not too hard to extend this approach to get a similar
guarantee when using a backtracking line search.

46

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 22:21, February 3, 2026



In the technical addendum at the end of these notes, we show that
by combining this result with the definition of convexity and doing
some clever manipulations, we can get a guarantee of the form

M

flxy) — f(x") < %H"L‘o — x5

Thus, for M-smooth functions, we can guarantee that the error is
O(1/k) after k iterations. Another way to put this is to say that we
can guarantee accuracy

flxy) — f(@") <e
as long as
M *
k2 o lleo — I2-

Note that if € is very small, this says we can expect to need a very
large number of iterations.

Strong convexity

We will now consider a stronger assumption on f and show that we
can get greatly improved guarantees. Recall that before we assumed
that f was M-smooth, meaning that

f(y) < @) + (g — .V @) + 7y~ 2l

for all @,y € dom f. In the analysis below, we consider adding
an additional assumption. Specifically, we will assume that f is
also strongly convex (with strong convexity parameter m > 0),
meaning that

fly) = f@)+ -2 V@) + Sly—=l3 @
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for all ,y € dom f. This tells us that not only is f bounded be-
low by a linear approximation (since it is convex), but also by a
(nontrivial) convex quadratic approximation. Note also that strong
convexity implies strict convexity, but strict convexity does not nec-
essarily imply strong convexity.

In the homework you will argue that strong convexity as defined
in (4) is equivalent to the assumption that f(x) — 2|lx||3 is convex.
In the case that f is twice differentiable, this implies that

Vi f(z) = ml.

That is, the eigenvalues of the Hessian are bounded below by m > 0
for all . When combined with the assumption of M-smoothness,
this bounds the conditioning of the Hessian matrix so that its eigen-
values are bounded between m > 0 and M < oo. However, again
note that strong convexity does not require f to be twice differen-
tiable.

Convergence of gradient descent: Strong convexity

Here we will show that if a function is strongly convex, in addition
to being M-smooth, then we can obtain a significantly improved
convergence guarantee compared to what we had in the case of M-
smoothness alone. We begin our analysis in the same way as before,
which began by showing in (3) that M-smoothness implies that

flan) < flan) = 59 F ol

Next we use strong convexity to obtain a lower bound on ||V f()||3.
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Specifically, recall from the definition of strong convexity in (4) that
for any @,y € dom f

fy) = f@) + y—a. V@) + Sy -3 ()

We can obtain a simpler lower bound for f(y) by determining the
smallest value that the right-hand side of (5) could ever take over
all possible choices of y To do this, we simply minimize this lower
bound by taking the gradient with respect to y and setting it equal
to zero:

Vf(x)+m(y —x) =0,
From this we obtain that the lower bound in (5) will be minimized

by ,
y—x=——Vf(x)
m
Plugging this into (5) yields
1 1
fly) = f(@) = —|[Vf@)]s + 5 IV (@)l
= f(w) — 5 IV f(@)]}

In particular, this applies when y = a*, which after some rearranging

yields
IVf(@)ll; = 2m (f(x) — f(2")). (PL)

This is a famous and useful result, often referred to as the Polyak-
Lojasiewicz inequality.

Combining the PL inequality with (3) we obtain
f(@re) = f&") < flaen) — fle") — = (f (@) — flx"))
(1= 1) e — sl
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That is, the gap between the current value of the objective function
and the optimal value is cut down by a factor of 1 — m/M < 1 at
each iteration.

This is an example of linear convergence, and you will show on the
homework that this implies that

flxr) — f(x") <

as long as
) log(f (@) — @)/
log((M —m)/M)

This is much faster convergence than what we obtained before —
it is O(loge™!) versus O(e™!). As an example, if we wanted to set
e =109 loge ™ = 14 (versus e ! = 10°). Of course, to get this we
had to make a much stronger assumption (strong convexity), which
may not always be applicable depending on the objective function
you are optimizing.

k>

Finally, we also note that the PL inequality above also provides some
guidance in terms of setting a stopping criterion. Specifically, if we
declare convergence when ||V f(x;)||2 < € then the PL inequality

allows us to conclude that
62

flaw) — fla) < oIV @l < o

This provides a principled way of declaring convergence.
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Technical Details: Convergence analysis for //-smooth
functions

Here we complete the convergence analysis for gradient descent on
M-smooth functions that is summarized above. Specifically, recall
that above in (3) we showed that if f is M-smooth then

1
f(@re1) < flaer) — m“vf(wk)\@-
Moreover, by the convexity of f,
flay) < f(27) + (@ — 2", Vf(x))),

where x* is a minimizer of f, and so we have

F(@) < F(@) + @y — 2, V (@) — sV o)

Substituting V f(x;) = M (x) — xpy1) then yields

M
f(@p) = flx") < M (@ — ", @) — @pr) — ?Hwk—ﬂ?ml”g- (6)

We can re-write this in a slightly more convenient way using the fact
that
la —bll; = llall; — 2(a, b) + [|b];

and thus
2(a,b) — ||b]l; = [|la]l5 — |la — b]|5.

Setting @ = x, — * and b = x; — x;; and applying this to (6),
we obtain the bound

M
f(@r1) = flx") < o (lr — 2|l = [l — 2)3) -
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This result bounds how far away f (@) is from the optimal f(x*) in
terms (primarily) of the error in the previous iteration: ||a; — a*||3.
We can use this result to bound f(xyy1) — f(x*) in terms of the
initial error ||@y — x*||? by a clever argument.

Specifically, this bound holds not only for iteration k, but for all
iterations 7 = 1, ..., k, so we can write down k inequalities and then
sum them up to obtain

k

[k
Zf(mz) — flx") < > (Z iy — x*]|5 — ||z — ac*H%) :

1=1

The right-hand side of this inequality is what is called a telescopic
sum: each successive term in the sum cancels out part of the previous
term. Once you write this out, all the terms cancel except for two
(one component from the ¢ = 1 term and one from the ¢ = k term)
giving us:

k

> flm) — flah) <

1=1

(llwo = 2 = |z — 2|J2)

A
SIS

g — a*||>-

Since, as noted above, f(x;) is monotonically decreasing in 4, we also
have that

=1
and thus
* M * |12
Fla) — fl@) < 5 lle — 21

which is exactly what we wanted to show.
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