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Introduction to Optimization

Optimization problems are ubiquitous in science and engineering.

Optimization problems arise any time we have a collection of elements
and wish to select the “best” one (according to some criterion). The
process of casting a real world problem as being one of mathematical
optimization consists of three main components

1. a set of variables, often called decision variables, that we
have control over;

2. an objective function that maps the decision variables to
some quality that we want to maximize (goodness of fit, profit,
etc.) or some cost that we want to minimize (error, loss, etc.);
and

3. a constraint set that dictates restrictions on the decision
variables imposed by physical limitations, budgets on resources,
design requirements, etc.

In its most general form, we can express such an optimization prob-
lem mathematically as

minimize
x

f (x) subject to x ∈ X , (1)

where f : X → R is our objective function and X is our constraint
set.

In order to solve this optimization problem, we must find an x̂ ∈ X
such that

f (x̂) ≤ f (x) for all x ∈ X . (2)

We call an x̂ satisfying (2) a minimizer of f in X , and a solution
to the optimization problem (1).
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By convention, we will focus only on minimization problems, noting
that x̂maximizes f in X if and only if x̂ minimizes −f in X — thus
any maximization problem can be easily turned into an equivalent
minimization problem.

There are a number of fundamental questions that arise when con-
sidering an optimization problem of the form (1):

1. Existence. Does a solution to (1) even exist? It could be that
f is not bounded from below, or that X has been defined in
such a way as to be empty. How can we guarantee the existence
of a solution?

2. Uniqueness. Note that an x̂ satisfying (2) need not be
unique. Only when the inequality is strict can we conclude
that there is a unique (strict) minimizer. When can we con-
clude that there is a unique solution?

3. Verification. Given a candidate solution x̂, is there a simple
condition we can check to determine if it is a/the solution to
to (1)?

4. Solution. Can we find a closed-form expression for a/the
solution to (1)? Can we provide an efficient algorithm for com-
puting a/the solution to (1)?

Throughout this course we will devote significant attention to all of
these questions, primarily in the context of convex problems.
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Convex Optimization

The great watershed in optimization is not between linearity and
non-linearity, but convexity and non-convexity.

— R. Tyrrell Rockafellar

Solving optimization problems is in general very difficult. In this
class, we will develop a framework for analyzing and solving convex
programs.1 To state precisely what we mean by this, recall that a
set C is convex if

x,y ∈ C ⇒ (1− θ)x + θy ∈ C

for all θ ∈ [0, 1]. A function f is convex if

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y)

for all x,y and for all θ ∈ [0, 1]. (If either of these notions are new
to you, don’t worry. We will have much more on this later!) With
these definitions in hand, a convex program simply corresponds to
one where

1. The constraint set X is a convex subset of a real vector space
(in this class we will focus exclusively on X ⊆ RN).

2. The objective function f : X → R is a convex function.

Typically, we will rely on X to be specified by a series of constraint
functionals:

x ∈ X ⇔ gm(x) ≤ bm for m = 1, . . . ,M.

1Throughout this course will use the terminology “optimization/convex pro-
gram” interchangeably with “optimization/convex problem.”
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In this case, an equivalent way to characterize a convex program is
for each of the gm to be convex functions.

What does convexity tell us? Two important things:

� Local minimizers are also global minimizers. So we can check
if a certain point is optimal by looking in a small neighborhood
and seeing if there is a direction to move that decreases f .

� First-order necessary conditions for optimality turn out to be
sufficient. For example, when the problem is unconstrained and
smooth, this means we can find an optimal point by finding x̂
such that ∇f (x̂) = 0.

The upshot of these two things is that if f (x) and its derivative (as
well as the gm(x) and their derivatives in the case of a constrained
problem)2 are easy to compute, then relatively simple algorithms
(e.g., gradient descent) are provably effective at performing the op-
timization.

The material in this course has three major components. The first
is the mathematical foundations of convex optimization. We will
see that talking about the solution to convex programs requires a
beautiful combination of algebraic and geometric ideas.

The second component is algorithms for solving convex programs.
We will talk about general purpose algorithms (and their associated
computational guarantees), but we will also look at algorithms that
are specialized to certain classes of problems, and even certain appli-
cations. Rather than focus exclusively on the “latest and greatest”,
we will try to understand the key ideas that are combined in different
ways in many solvers.
2And as we will see, much of what we do can be naturally extended to
non-smooth functions which do not have any derivatives.
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Finally, we will talk a lot about modeling. That is, how convex
optimization appears in signal processing, control systems, machine
learning, statistical inference, etc. We will give many examples of
mapping a word problem into an optimization program. These ex-
amples will be interleaved with the discussion of the first two compo-
nents, and there are several examples which we may return to several
times.
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Convexity and Efficiency

Before going any further, there are two natural questions that you
might have that we ought to explicitly address.

Can all convex programs be solved efficiently?

Unfortunately, no. There are many examples of even seemingly in-
nocuous convex programs which are NP-hard. One way this can
happen is if the objective function f and/or its derivative themselves
are hard to compute. For example, consider the (∞, 1) norm:

f (X) = ∥X∥∞,1 = max
∥v∥∞≤1

∥Xv∥1.

This is a valid matrix norm, and we will see later that all valid
norms are convex. But it is known that computing f is NP-hard
(see [Roh00]), as is approximating it to a fixed accuracy. Thus, op-
timization problems involving this quantity (as either the objective
function or in the constraints) are bound to be difficult, despite being
convex.

Are there any non-convex programs that can be solved
efficiently?

Of course there are. Here is one for which you already know the
answer:

maximize
x∈RN

xTAx subject to ∥x∥2 = 1,

where A is an arbitrary N × N symmetric matrix. This is the
maximization of an indefinite quadratic form (not necessarily convex
or concave) over a nonconvex set. But we know that the optimal
value of this program is the largest eigenvalue, and the optimizer
is the corresponding eigenvector, and there are well-known practical
algorithms for computing these.
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When there is a solution to a nonconvex program, it often times relies
on nice coincidences in the structure of the problem — perturbing
the problem just a little bit can disturb these coincidences. Consider
another nonconvex program that we know how to solve:

minimize
X

N∑
i,j=1

(Xi,j − Ai,j)
2 subject to rank(X) ≤ R.

That is, we want the best rank-R approximation (in the least-squares
sense) to the N × N matrix A. The functional we are optimizing
above is convex, but the rank constraint definitely is not. Neverthe-
less, we can compute the answer efficiently using the SVD of A:

A = UΣV T =
N∑
n=1

σnunv
T
n , σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

The program above is solved simply by truncating this sum to its
first R terms:

X̂ =
R∑

n=1

σnunv
T
n .

But now suppose that instead of the matrix A, we are given a subset
of its entries indexed by I. We now want to find the matrix that is
most consistent over this subset while also having rank at most R:

minimize
X

∑
(i,j)∈I

(Xi,j − Ai,j)
2 subject to rank(X) ≤ R.

Despite its similarity to the first problem above, this “matrix com-
pletion” problem is NP-hard in general.

Convex programs tend to be more robust to variations of this type.
Things like adding subspace constraints, restricting variables to be
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positive, and considering functionals of linear transforms of x all
preserve the essential convex structure.

Note, however, that nonconvex problems can often still be solved in
many cases. For instance, consider the “matrix completion” problem
described above. Despite being NP-hard in general, there are im-
portant special cases where we can still solve this problem efficiently.
One common trick for dealing with non-convex problems that works
here and that we will see later in this course is convex relaxation.
This approach replaces a non-convex constraint (e.g., the rank con-
straint above) with a (cleverly chosen) convex surrogate. In some
cases (e.g., for a restricted class of matrices A above) one can show
that the convex relaxation will have the same solution as the original
non-convex problem.

Another approach to non-convex optimization, and one that is popu-
lar both in solving the matrix completion problem above as well as in
training neural networks, is to simply ignore this non-convexity and
to apply standard algorithms like gradient descent that, while derived
with convex problems in mind, do not explicitly require convexity to
be applied. While we lose the kinds of theoretical guarantees that
we will derive for the convex case, these can still be effective tools in
practice.

Next time we will continue our introduction to convex optimization
by introducing a few of the very well-known classes of convex opti-
mization programs and giving some example applications.
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