
Convex relaxation

The art and science of convex relaxation revolves around taking a
non-convex problem that you want to solve, and replacing it with
a convex problem which you can actually solve – the solution to
the convex program gives information about (usually a lower bound)
the solution to the original program. Usually this is done by either
“convexifying” the constraints or convexifying the functional – we
will see examples of both below.

Minimum-Cut

Suppose that we have a directed graph with vertices indexed by
1, . . . , N . By convention we will denote vertex 1 as the “source” and
vertex N as the “sink”. Between each pair of vertices (i, j) there is a
capacity Ci,j ≥ 0 — if there is no edge from i to j, we take Ci,j = 0.
A cut partitions the vertices into two sets: a S which contains the
source, and a set Sc which contains the sink. The capacity of the cut
is the sum of the capacities of all the edges that originate in S and
terminate in SC.

In example below, we have N = 6 and S = {1, 2, 4, 5}:

1

2

3

4 6

5

6

6
5 2

3

7
2

2

2

S

1

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, April 18, 2021

The capacity of this cut is 2 + 3 + 2 = 7.

In general, the capacity associated with a cut S is∑
i∈S,j 6∈S

Ci,j.

If we take the vector ν ∈ RN as

νi =

{
1, i ∈ S,
0, i 6∈ S

then we can write the problem of finding the minimum cut as

minimize
ν

N∑
i=1

N∑
j=1

Ci,j max(νi − νj, 0)

subject to νi ∈ {0, 1}, i = 1, . . . , N,

ν1 = 1, νN = 0.

To make the objective function simpler, we introduce λi,j, and the
minimum cut program can be rewritten as

(MINCUT) minimize
Λ,ν

N∑
i=1

N∑
j=1

λi,jCi,j

subject to λi,j = max(νi − νj, 0), i, j = 1, . . . , N,

νi ∈ {0, 1}, i = 1, . . . , N,

ν1 = 1, νN = 0.

We will not do so here, but one reason why the minimum-cut problem
is of interest is that its dual is the maximum-flow problem (i.e., given
a directed graph and capacity constraints, what is the largest flow
possible from the source to the sink).

2

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, April 18, 2021

As it is stated, there are two things making this program nonconvex
– we have non-affine equality constraints relating λi,j to νi and νj,
and we have binary constraints on νi. If we simply drop the integer
constraint, and relax

λi,j = max(νi − νi, 0) to λi,j ≥ νi − νj and λi,j ≥ 0,

we are left with the linear program

(LP-R) minimize
Λ,ν

〈Λ,C〉
subject to λi,j ≥ νi − νj, λi,j ≥ 0, i, j = 1, . . . , N,

ν1 = 1, νN = 0.

Note that the domain we are optimizing over in the LP relaxation is
larger than the domain in the original formulation – this means that
every valid cut (feasible Λ,ν for the original program) is feasible in
the LP relaxation. So at the very least we know that

LP-R? ≤ MINCUT?.

But the semi-amazing thing is that the solutions to the two programs
turn out to agree.

We show this by establishing that for every solution of the relaxation,
there is at least one cut with value less than or equal to LP-R?. We
do this by generating a random cut (with the associated probabilities
carefully chosen) and show that in expectation, it is less than LP-R?.

Let Z be a uniform random variable on [0, 1]. Let Λ?,ν? be solutions
to (LP-R). Create a cut S with the rule:

if ν?n > Z, then take n ∈ S.

3

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, April 18, 2021

The probability that a particular edge i→ j is in this cut is

P (i ∈ S, j 6∈ S) = P
(
ν?j ≤ Z ≤ ν?i

)
≤ max(ν?i − ν?j , 0)

≤ λ?i,j,

where the last inequality follows simply from the constraints in (LP-
R). This cut is random, so its capacity is a random variable, and its
expectation is

E[capacity(S)] =
∑
i,j

Ci,j P (i ∈ S, j 6∈ S)

≤
∑
i,j

Ci,jλ
?
i,j

= LP-R?.

Thus there must be a cut whose capacity is at most LP-R?. This
establishes that

MINCUT? ≤ LP-R?.

Of course, combining this with the result above means than

MINCUT? = LP-R?.

This is an example of a wonderful situation where convex relaxation
costs us nothing, but makes solving the program computationally
tractable.

4

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, April 18, 2021

Maximum-cut

A good resource for this section and the next is Ben-Tal and Ne-
mirovski [BTN01].

This problem has a very similar setup as the minimum-cut problem,
but it is different in subtle ways. We are given a graph; this time
the edges are undirected, and have positive weights Ai,j associated
with them. Since the graph is undirected, Ai,j = Aj,i and so A is
symmetric. We will also assume that Ai,i = 0 for all i.

As before, a cut partitions the vertices into two sets, S and Sc – these
sets can be arbitrary; there is no notion of source and sink here. For
example, the cut in this example:

1

2

3

4

5

6

A1,3

A1,2

A2,4

A3,4

A4,5

A4,6

A5,6 S

has value cut(S) = A2,4 + A3,4. The problem is to find the cut
that maximizes the weights of the edges going between the two
partitions.

We can specify a cut of the graph with a binary valued vector x of
length N , where each xn ∈ {−1, 1}. We set xn = 1 if vertex n is in

5

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, April 18, 2021

S and xn = −1 if vertex n is in Sc. The value of the cut is

cut(S) =
1

4

N∑
i=1

N∑
j=1

Ai,j(1− xixj).

Note that if xi 6= xj, then (1 − xixj) = 2, while if xi = xj, then
(1− xixj) = 0. The factor of 1/4 in front comes from the fact that
(1 − xixj) = 2 for edges in the cut, and that we are counting every
edge twice (from i to j and again from j to i). Notice that we can
write this value as a quadratic function of x:

cut(S) =
1

4

(
1TA1− xTAx

)
The maximum-cut problem is find the cut with the largest value:

(MAXCUT) maximize
x∈RN

1

4
1TA1− 1

4
xTAx

subject to xi ∈ {−1, 1}.
Right now, this looks pretty gnarly, as A has no guarantee of being
PSD, and we have integer constraints on x. We can address the first
concern by re-writing this as a search for a matrix X = xxT. As
now xTAx = 〈X,A〉, we have

maximize
X∈RN×N

1

4
1TA1− 1

4
〈X,A〉

subject to X � 0

Xi,i = 1, i = 1, . . . , N

rank(X) = 1.

You should be able to convince yourself that X is feasible above if
and only if it can be written as X = xxT, where the entries of x
are ±1.

6

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, April 18, 2021

The recast program looks like a SDP, except for the rank constraint.
The relaxation, then, is to simply drop it and solve

(MAXCUT-R) maximize
X∈RN×N

1

4
1TA1− 1

4
〈X,A〉

subject to X � 0

Xi,i = 1, i = 1, . . . , N.

As we are optimizing over a larger set, the optimal value of MAXCUT-
R will in general be larger than MAXCUT:

MAXCUT-R? ≥ MAXCUT?.

But there is a classic result [GW95] that shows it will not be too
much larger:

MAXCUT? ≥ (0.87856) ·MAXCUT-R?.

The argument again relies on looking at the expected value of a
random cut. Let X? be a solution to MAXCUT-R. Since X∗ is
PSD, it can be factored as

X? = V TV .

With vj as the jth column of V , this means X?
i,j = 〈vi,vj〉. Since

along the diagonal we have X?
i,i = 1, this means that ‖vi‖2 = 1 as

well. We can associate one column vi with each vertex in the original
problem. To create the cut, we draw a vector z from the unit-sphere
(so ‖z‖2 = 1) uniformly at random,1 and set

S = {i : 〈vi, z〉 ≥ 0}.
1In practice, you could do this by drawing each entry Normal(0, 1) indepen-
dently, then normalizing.

7

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, April 18, 2021

It should be clear that the probability that any fixed vertex is in S
is 1/2. But what is the probability that vertex i and vertex j are
on different sides? The probability of this is simply the ratio of the
angle between vi and vj to π:

P (i ∈ S, j 6∈ S) + P (i 6∈ S, j ∈ S) =
arccos〈vi,vj〉

π
=

arccosX?
i,j

π
.

Thus the expectation of the cut value is

E[cut(S)] =
1

2

N∑
i=1

N∑
j=1

Ai,j (P (i ∈ S, j 6∈ S) + P (i 6∈ S, j ∈ S))

=
N∑
i=1

N∑
j=1

Ai,j

arccosX?
i,j

2π
.

There must be at least one cut that has a value greater than or equal
to the mean, so we know that

MAXCUT ≥ E[cut(S)].

Let’s compare the terms in this sum to those in the objection function
for MAXCUT-R. We know that the entries in X? have at most unit
magnitude2 −1 ≤ X?

i,j ≤ 1, and it is a fact that:

arccos t

2π
≥ (0.87856)

1

4
(1− t), for t ∈ [−1, 1].

Here is a little “proof by plot” of this fact:

2This follows from X?
i,j = 〈vi,vk〉, ‖vi‖2 = 1, and Cauchy-Swartz.

8

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, April 18, 2021

t
-1 -0.5 0 0.5 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

blue = arccos t
2π

, red = (0.878856)1
4
(1− t).

Thus

MAXCUT? ≥ E[cut(S)]

=
N∑
i=1

N∑
j=1

Ai,j

arccosX?
i,j

2π

≥ (0.87856)
N∑
i=1

N∑
j=1

1

4
Ai,j(1−X?

i,j)

= (0.87856) ·MAXCUT-R?

9

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, April 18, 2021

Quadratic equality constraints

The integer constraint xi ∈ {−1, 1} in the example above might also
be interpreted as a quadratic equality constraint:

xi ∈ {−1, 1} ⇔ x2
i = 1.

As we are well aware, quadratic (or any other nonlinear) equality
constraints make the feasibility region nonconvex.

We consider general nonconvex quadratic programs of the form

minimize
x∈RN

xTA0x + 2〈x, b0〉 + c0

subject to xTAmx + 2〈x, bm〉 + cm = 0, m = 1, . . . ,M,

where the Am are symmetric, but not necessarily � 0. We will
show how to recast these problems as optimization over the SDP
cone with an additional (nonconvex) rank constraint. Then we will
have a natural convex relaxation by dropping the rank constraint.
This general methodology works for equality or (possibly nonconvex)
inequality constraints, but for the sake of simplicity, we will just look
at equality constraints.

We can turn a quadratic form into a trace inner product with a rank
1 matrix as follows. It is clear that

xTAx + 2bTx + c =
[
xT 1

] [A b
bT c

] [
x
1

]
= trace

([
A b
bT c

]
Xx

)
, Xx =

[
x
1

] [
xT 1

]
.

10

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, April 18, 2021

This means we can write the nonconvex quadratic program as

minimize
x∈RN

trace

([
A0 b0
bT0 c0

]
Xx

)
subject to trace

([
Am bm
bTm cm

]
Xx

)
= 0, m = 1, . . . ,M.

With

Fm =

[
Am bm
bTm cm

]
,

we see that this program is equivalent to

minimize
X∈RN×N

〈X,F 0〉
subject to 〈X,Fm〉 = 0, m = 1, . . . ,M

X � 0

rank(X) = 1.

Again, we can get a convex relaxation simply by dropping the rank
constraint. How well this works depends on the particulars of the
problem. There are certain situations where it is exact; one of these
is when there is a single non-convex inequality constraint.There are
other situations where it is not exact but is provably good – one
example is maximum-cut. There are other situations where it is
arbitrarily bad.

11

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, April 18, 2021

Example: Phase retrieval

In coherent imaging applications, a not uncommon problem is to re-
construct an unknown vector x from measurements of the magnitude
of a series of linear functionals. We observe

ym = |〈x,am〉|2 (+ noise), m = 1, . . . ,M.

For instance, if am are Fourier vectors, we are observing samples of
the magnitude of the Fourier transform of x. If we also measured the
phase, then recovering x is a standard linear inverse problem (and
if we have a complete set of samples in the Fourier domain, you can
just take an inverse Fourier transform). But since we do not get to
see the phase, we have to estimate it along with the underlying x –
this problem is often referred to as phase retrieval.

We can rewrite the measurements as

ym = 〈am,x〉〈x,am〉 = xHama
H
mx = trace(ama

H
mxx

H)

= 〈X,Am〉F ,
where Am = ama

H
m and X = xxH. So solving the phase retrieval

problem is the same as finding an N ×N matrix with the following
properties:

〈X,Am〉F = ym, m = 1, . . . ,M, X � 0, rank(X) = 1.

The first condition is just thatX obeys a certain set of linear equality
constraints; the second is that X is in the SDP cone; the third is a
nonconvex constraint.

One convex relaxation for this problem simply drops the rank con-
straint and finds a feasible point that obeys the first two conditions.
Under certain conditions on the am, there will only be one point in
this intersection once M is mildly larger than N .

12

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, April 18, 2021

References

[BTN01] A. Ben-Tal and A. Nemirovski. Lectures on Modern
Covex Optimization. SIAM, 2001.

[GW95] M. X. Goemans and D. P. Williamson. Improved approxi-
mation algorithms for maximum cut and satisfiability prob-
lems using semidefinite programming. J. Assoc. Comp.
Mach., 42(6):1115–1145, November 1995.

13

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, April 18, 2021

