
Distributed Recovery/Regression/Classification
using ADMM

By being very crafty with how we do the splitting, we can use ADMM
to solve certain kinds of optimization programs in a distributed man-
ner.

We consider (this material comes from [BPC+10, Sec. 8]) the general
problem of “fitting” a vector x ∈ RN to an observed vector b ∈ RM

through an M ×N matrix A. We will encourage x to have certain
structure using a regularizer. This type of problem is ubiquitous in
signal processing and machine learning – the math stays the same,
only the words change from area to area.

At a high level, we are interested in solving

minimize
x

Loss(Ax− b) + Regularizer(x)

where the M ×N matrix A and the vector b are given. Notice that

Loss(·) : RM → R, and Regularizer(·) : RN → R.

We will assume that one or both of these functions are separable, at
least at the block level. This means we can write

Loss(Ax− b) =
B∑
i=1

`i(A
(i)x− b(i)),

where A(i) are Mi × N matrices formed by partitioning the rows
of A, and b(i) ∈ RMi is the corresponding part of b. For separable
regularizers, we can write

Regularizer(x) =
C∑
i=1

ri(x
(i)),
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where the x(i) ∈ RNi partition the vector x. These two types of
separability will allow us to divide up the optimization in two different
ways.

Example: Inverse Problems and Regression

Two popular methods for solving linear inverse problems and/or cal-
culating regressors are solving

minimize
x

1

2
‖Ax− b‖22 + τ‖x‖22,

(Tikhonov regularization or ridge regression), and

minimize
x

1

2
‖Ax− b‖22 + τ‖x‖1,

(the LASSO).

These both clearly fit the separability criteria, as

‖Ax− b‖22 =
M∑
m=1

(aT
mx− b[m])2,

‖x‖22 =
N∑
n=1

(x[n])2

‖x‖1 =
N∑
n=1

|x[n]|.

where aT
m is the mth row of A.
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Example: Support Vector Machines

Previously, we saw how if we are given a set of M training examples
(xm, ym), where xm ∈ RN and ym ∈ {−1, 1}, we can find a maximum
margin linear classifier by solving

min
w,b

1

2
‖w‖22 subject to ym(b−〈xm,w〉)+1 ≤ 0, m = 1, . . . ,M.

With the classifier trained (optimal solution w?, b? computed), we
can assign a label y′ to a new point x′ using

y′ = sign(〈x′,w?〉 + b?).

Instead of enforcing the constraints above strictly, we can allow some
errors by penalizing mis-classifications on the training data appro-
priately. One reasonable way to do this is make the loss zero if
ym(b − 〈xm,w〉) + 1 ≤ 0, and then have it increase linearly as this
quantity exceeds zero. That is, we solve

min
w,b

M∑
m=1

`(ym(b− 〈xm,w〉) + 1) +
1

2
‖w‖22,

where `(·) is

`(u) = (u)+ =

{
0, u ≤ 0,

u, u > 0.

This is penalty is often called the hinge loss. Note that the argu-
ment for `(·) is an affine function of the optimization variables:

ym(b− 〈xm,w〉) + 1 =
[
−ymxT

m ym
] [w
b

]
+ 1.

Both the loss function and regularizer in this formulation of the SVM
are clearly separable.
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Splitting across examples

This framework is useful when we have “many measurements of a
small vector” or “large volumes of low-dimensional data”.

We partition the rows of A and entries of b:

A =


A(1)

A(2)

...

A(B)

 , b =


b(1)

b(2)
...

b(B)

 .
If the loss function is separable over this partition, our optimization
problem is

minimize
x

B∑
i=1

`i(A
(i)x− b(i)) + r(x),

where r(·) is the regularizer. We start by splitting the optimization
variables in the loss function and those in the regularizer, arriving at
the equivalent program

minimize
x,z

B∑
i=1

`i(A
(i)x− b(i)) + r(z) subject to x− z = 0.

This does not make the Lagrangian for the primal update separable,
as the Ai are still tying together all of the entries in x. The trick is
to introduce B different vectors x(i) ∈ RN , one for each block, and
then use the constraints to make them all agree. This is done with

minimize
x(1),...,x(B),z

B∑
i=1

`i(A
(i)x(i) − b(i)) + r(z)

subject to x(i) − z = 0, i = 1, . . . , B.
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The augmented Lagrangian for this last problem can be expressed as

Lρ(x(1), . . . ,x(B), z,µ(1), . . . ,µ(B)) =
B∑
i=1

Li(x(i), z,µ(i)),

where

Li(x(i)z,µ(i)) = `i(A
(i)x(i) − b(i)) +

r(z)

B
+
ρ

2
‖x(i) − z + µ(i)‖22

and the µ(i) are the (rescaled) Lagrange multipliers for the constraint
x(i) − z = 0.

As the Lagrangian is separable over the B blocks, each of the primal
updates for the xi can be performed independently. This makes the
ADMM iteration

x
(i)
k+1 = arg min

x(i)

(
`i(A

(i)x(i) − b(i)) +
ρ

2
‖x(i) − zk + µ

(i)
k ‖22

)
zk+1 = arg min

z

(
r(z) +

ρ

2

B∑
i=1

‖z − x(i)
k+1 − µ

(i)
k ‖22

)
µ

(i)
k+1 = µ

(i)
k + x

(i)
k+1 − zk+1

The z update can be written in terms of the average of the x
(i)
k+1 and

the µ
(i)
k . To see this, first note that

B∑
i=1

‖z − vi‖22 = B‖z‖22 − 2

〈
z,

B∑
i=1

vi

〉
+

N∑
i=1

‖vi‖22

= B‖z‖22 − 2B 〈z, v̄〉 + B‖v̄‖22 +

(
−B‖v̄‖22 +

N∑
i=1

‖vi‖22

)

= B‖z − v̄‖22 +

(
−B‖v̄‖22 +

N∑
i=1

‖vi‖22

)
.
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where v̄ = 1
B

∑B
i=1 vi. Thus

arg min
z

(
r(z) +

ρ

2

B∑
i=1

‖z − x(i)
k+1 − µ

(i)
k ‖22

)

= arg min
z

(
r(z) +

Bρ

2
‖z − x̄k+1 − µ̄k‖22

)

Distributed ADMM (dividing rows of A)

x
(i)
k+1 = arg min

x(i)

(
`i(A

(i)x(i) − b(i)) +
ρ

2
‖x(i) − zk + µ

(i)
k ‖22

)
zk+1 = arg min

z

(
r(z) +

Bρ

2
‖z − x̄k+1 − µ̄k‖22

)
µ

(i)
k+1 = µ

(i)
k + x

(i)
k+1 − zk+1

where

x̄k+1 =
1

B

B∑
i=1

x
(i)
k+1, µ̄k =

1

B

B∑
i=1

µ
(i)
k .

The high-level architecture is thatB separate units solve independent
optimization programs for the B x(i) updates. These are collected
and averaged, and a single optimization program is solved to get the
z update. The new z is then communicated back to each of the B
units. The Lagrange multiplier update can be easily computed both
centrally and at the B units, so these do not have to be communi-
cated.
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Example: The LASSO

With `i(A
(i)x(i) − b(i)) = ‖A(i)x(i) − b(i)‖22 and r(x) = τ‖x‖1, the

ADMM iteration becomes

x
(i)
k+1 = arg min

x(i)

(
‖A(i)x(i) − b(i)‖22 +

ρ

2
‖x(i) − zk + µ

(i)
k ‖22

)
zk+1 = Tτ/(Bρ) (x̄k+1 + µ̄k)

µ
(i)
k+1 = µ

(i)
k + x

(i)
k+1 − zk+1.

The x(i) updates are all small unconstrained least-squares problems
whose solutions can be computed independently; the z update is a
simple soft thresholding, and the µ(i) and µ̄ updates are computed
simply by adding vectors.

Example: SVMs

For the SVM, we collect the weights and the offset into a single
optimization vector

x =

[
w
b

]
∈ RN+1

and set

A =

 −y1xT
1 y1

... ...
−yMxT

M yM .


If we partition the data (A) into B blocks (A(1), . . . ,A(B)) then we
can express the ith component of the augmented Lagrangian as

Li(x(i), z,µ(i)) = 1T(A(i)x(i) + 1)+ +
r(z)

B
+
ρ

2
‖x(i) − z + µ(i)‖22.

Note that the regularization does not include the last term in z:

r(z) =
1

2

N∑
n=1

|z[n]|2
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This results in the ADMM iteration

x
(i)
k+1 = arg min

x(i)

(
1T(A(i)x(i) + 1)+ +

ρ

2
‖x(i) − zk + µ

(i)
k ‖22

)
,

zk+1[n] =

{
Bρ

1+Bρ
(x̄k+1[n] + µ̄k[n]) , n = 1, . . . , N,

x̄k+1[n] + µ̄k[n], n = N + 1,

µ
(i)
k+1 = µ

(i)
k + x

(i)
k+1 − zk+1.

Splitting across features

Similarly, we can divide up the columns of A. This is described in
[BPC+10, Section 8.3].
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