
Distributed Recovery/Regression/Classification
using ADMM

By being very crafty with how we do the splitting, we can use ADMM
to solve certain kinds of optimization programs in a distributed man-
ner.

We consider (this material comes from [BPC+10, Sec. 8]) the general
problem of “fitting” a vector x ∈ RN to an observed vector b ∈ RM

through an M ×N matrix A. We will encourage x to have certain
structure using a regularizer. This type of problem is ubiquitous in
signal processing and machine learning – the math stays the same,
only the words change from area to area.

At a high level, we are interested in solving

minimize
x

Loss(Ax− b) + Regularizer(x)

where the M ×N matrix A and the vector b are given. Notice that

Loss(·) : RM → R, and Regularizer(·) : RN → R.

We will assume that one or both of these functions are separable, at
least at the block level. This means we can write

Loss(Ax− b) =
B∑
i=1

`i(A
(i)x− b(i)),

where A(i) are Mi × N matrices formed by partitioning the rows
of A, and b(i) ∈ RMi is the corresponding part of b. For separable
regularizers, we can write

Regularizer(x) =
C∑
i=1

ri(x
(i)),

63

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:06, April 7, 2021

where the x(i) ∈ RNi partition the vector x. These two types of
separability will allow us to divide up the optimization in two different
ways.

Example: Inverse Problems and Regression

Two popular methods for solving linear inverse problems and/or cal-
culating regressors are solving

minimize
x

1

2
‖Ax− b‖22 + τ‖x‖22,

(Tikhonov regularization or ridge regression), and

minimize
x

1

2
‖Ax− b‖22 + τ‖x‖1,

(the LASSO).

These both clearly fit the separability criteria, as

‖Ax− b‖22 =
M∑
m=1

(aT
mx− b[m])2,

‖x‖22 =
N∑
n=1

(x[n])2

‖x‖1 =
N∑
n=1

|x[n]|.

where aT
m is the mth row of A.

64

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:06, April 7, 2021

Example: Support Vector Machines

Previously, we saw how if we are given a set of M training examples
(xm, ym), where xm ∈ RN and ym ∈ {−1, 1}, we can find a maximum
margin linear classifier by solving

min
w,b

1

2
‖w‖22 subject to ym(b−〈xm,w〉)+1 ≤ 0, m = 1, . . . ,M.

With the classifier trained (optimal solution w?, b? computed), we
can assign a label y′ to a new point x′ using

y′ = sign(〈x′,w?〉 + b?).

Instead of enforcing the constraints above strictly, we can allow some
errors by penalizing mis-classifications on the training data appro-
priately. One reasonable way to do this is make the loss zero if
ym(b − 〈xm,w〉) + 1 ≤ 0, and then have it increase linearly as this
quantity exceeds zero. That is, we solve

min
w,b

M∑
m=1

`(ym(b− 〈xm,w〉) + 1) +
1

2
‖w‖22,

where `(·) is

`(u) = (u)+ =

{
0, u ≤ 0,

u, u > 0.

This is penalty is often called the hinge loss. Note that the argu-
ment for `(·) is an affine function of the optimization variables:

ym(b− 〈xm,w〉) + 1 =
[
−ymxT

m ym
] [w
b

]
+ 1.

Both the loss function and regularizer in this formulation of the SVM
are clearly separable.

65

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:06, April 7, 2021

Splitting across examples

This framework is useful when we have “many measurements of a
small vector” or “large volumes of low-dimensional data”.

We partition the rows of A and entries of b:

A =


A(1)

A(2)

...

A(B)

 , b =


b(1)

b(2)
...

b(B)

 .
If the loss function is separable over this partition, our optimization
problem is

minimize
x

B∑
i=1

`i(A
(i)x− b(i)) + r(x),

where r(·) is the regularizer. We start by splitting the optimization
variables in the loss function and those in the regularizer, arriving at
the equivalent program

minimize
x,z

B∑
i=1

`i(A
(i)x− b(i)) + r(z) subject to x− z = 0.

This does not make the Lagrangian for the primal update separable,
as the Ai are still tying together all of the entries in x. The trick is
to introduce B different vectors x(i) ∈ RN , one for each block, and
then use the constraints to make them all agree. This is done with

minimize
x(1),...,x(B),z

B∑
i=1

`i(A
(i)x(i) − b(i)) + r(z)

subject to x(i) − z = 0, i = 1, . . . , B.

66

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:06, April 7, 2021

The augmented Lagrangian for this last problem can be expressed as

Lρ(x(1), . . . ,x(B), z,µ(1), . . . ,µ(B)) =
B∑
i=1

Li(x(i), z,µ(i)),

where

Li(x(i)z,µ(i)) = `i(A
(i)x(i) − b(i)) +

r(z)

B
+
ρ

2
‖x(i) − z + µ(i)‖22

and the µ(i) are the (rescaled) Lagrange multipliers for the constraint
x(i) − z = 0.

As the Lagrangian is separable over the B blocks, each of the primal
updates for the xi can be performed independently. This makes the
ADMM iteration

x
(i)
k+1 = arg min

x(i)

(
`i(A

(i)x(i) − b(i)) +
ρ

2
‖x(i) − zk + µ

(i)
k ‖22

)
zk+1 = arg min

z

(
r(z) +

ρ

2

B∑
i=1

‖z − x(i)
k+1 − µ

(i)
k ‖22

)
µ

(i)
k+1 = µ

(i)
k + x

(i)
k+1 − zk+1

The z update can be written in terms of the average of the x
(i)
k+1 and

the µ
(i)
k . To see this, first note that

B∑
i=1

‖z − vi‖22 = B‖z‖22 − 2

〈
z,

B∑
i=1

vi

〉
+

N∑
i=1

‖vi‖22

= B‖z‖22 − 2B 〈z, v̄〉 + B‖v̄‖22 +

(
−B‖v̄‖22 +

N∑
i=1

‖vi‖22

)

= B‖z − v̄‖22 +

(
−B‖v̄‖22 +

N∑
i=1

‖vi‖22

)
.

67

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:06, April 7, 2021

where v̄ = 1
B

∑B
i=1 vi. Thus

arg min
z

(
r(z) +

ρ

2

B∑
i=1

‖z − x(i)
k+1 − µ

(i)
k ‖22

)

= arg min
z

(
r(z) +

Bρ

2
‖z − x̄k+1 − µ̄k‖22

)

Distributed ADMM (dividing rows of A)

x
(i)
k+1 = arg min

x(i)

(
`i(A

(i)x(i) − b(i)) +
ρ

2
‖x(i) − zk + µ

(i)
k ‖22

)
zk+1 = arg min

z

(
r(z) +

Bρ

2
‖z − x̄k+1 − µ̄k‖22

)
µ

(i)
k+1 = µ

(i)
k + x

(i)
k+1 − zk+1

where

x̄k+1 =
1

B

B∑
i=1

x
(i)
k+1, µ̄k =

1

B

B∑
i=1

µ
(i)
k .

The high-level architecture is thatB separate units solve independent
optimization programs for the B x(i) updates. These are collected
and averaged, and a single optimization program is solved to get the
z update. The new z is then communicated back to each of the B
units. The Lagrange multiplier update can be easily computed both
centrally and at the B units, so these do not have to be communi-
cated.

68

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:06, April 7, 2021

Example: The LASSO

With `i(A
(i)x(i) − b(i)) = ‖A(i)x(i) − b(i)‖22 and r(x) = τ‖x‖1, the

ADMM iteration becomes

x
(i)
k+1 = arg min

x(i)

(
‖A(i)x(i) − b(i)‖22 +

ρ

2
‖x(i) − zk + µ

(i)
k ‖22

)
zk+1 = Tτ/(Bρ) (x̄k+1 + µ̄k)

µ
(i)
k+1 = µ

(i)
k + x

(i)
k+1 − zk+1.

The x(i) updates are all small unconstrained least-squares problems
whose solutions can be computed independently; the z update is a
simple soft thresholding, and the µ(i) and µ̄ updates are computed
simply by adding vectors.

Example: SVMs

For the SVM, we collect the weights and the offset into a single
optimization vector

x =

[
w
b

]
∈ RN+1

and set

A =

 −y1xT
1 y1

... ...
−yMxT

M yM .


If we partition the data (A) into B blocks (A(1), . . . ,A(B)) then we
can express the ith component of the augmented Lagrangian as

Li(x(i), z,µ(i)) = 1T(A(i)x(i) + 1)+ +
r(z)

B
+
ρ

2
‖x(i) − z + µ(i)‖22.

Note that the regularization does not include the last term in z:

r(z) =
1

2

N∑
n=1

|z[n]|2

69

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:06, April 7, 2021

This results in the ADMM iteration

x
(i)
k+1 = arg min

x(i)

(
1T(A(i)x(i) + 1)+ +

ρ

2
‖x(i) − zk + µ

(i)
k ‖22

)
,

zk+1[n] =

{
Bρ

1+Bρ
(x̄k+1[n] + µ̄k[n]) , n = 1, . . . , N,

x̄k+1[n] + µ̄k[n], n = N + 1,

µ
(i)
k+1 = µ

(i)
k + x

(i)
k+1 − zk+1.

Splitting across features

Similarly, we can divide up the columns of A. This is described in
[BPC+10, Section 8.3].

References

[BPC+10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2010.

70

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:06, April 7, 2021

