
Alternating direction method of multipliers
(ADMM)

ADMM extends the method of multipliers in such a way that we
get back some of the decomposability (i.e., ability to parallelize) of
standard dual ascent algorithms. It also gives us a flexible framework
for incorporating many types of convex constraints, though we will
again focus on linear equality constraints to start. See [BPC+10] for
a more complete discussion.

ADMM splits the optimization variables into two parts, x and z,
and solves programs of the form

minimize
x,z

f (x) + g(z) subject to Ax +Bz = c.

The basic idea is to rotate through 3 steps:

1. Minimize the (augmented) Lagrangian over x with z and the
Lagrange multipliers ν fixed.

2. Minimize the (augmented) Lagrangian over z with x and ν
fixed.

3. Update the Lagrange multipliers using gradient ascent as be-
fore.

If the splitting is done in a careful manner, it can happen that each of
the subproblems above can be easily computed. We can also handle
general convex constraints (more on this later).

To make the three steps above more explicit: the augmented La-
grangian is

Lρ(x, z,ν) = f (x)+g(z)+νT(Ax+Bz−c)+
ρ

2
‖Ax+Bz−c‖22,

63

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:47, April 5, 2021

and the general ADMM iteration is

xk+1 = arg min
x

Lρ(x, zk,νk)

zk+1 = arg min
z

Lρ(xk+1, z,νk)

νk+1 = νk + ρ(Axk+1 +Bzk+1 − c).

The only real difference between ADMM and MoM is the we are
splitting the primal minimization into two parts instead of optimizing
over (x, z) jointly.

Scaled form.

We can write the ADMM iterations in a more convenient form by
substituting

µ =
1

ρ
ν.

By “completing the square” we have that

νT(Ax+Bz−c)+
ρ

2
‖Ax+Bz−c‖22 =

ρ

2
‖Ax+Bz−c+µ‖22−

ρ

2
‖µ‖22,

and so we can write:

ADMM:

xk+1 = arg min
x

(
f (x) +

ρ

2
‖Ax +Bzk − c + µk‖22

)
zk+1 = arg min

z

(
g(z) +

ρ

2
‖Axk+1 +Bz − c + µk‖22

)
µk+1 = µk +Axk+1 +Bzk+1 − c

64

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:47, April 5, 2021

Example: The LASSO

Recall the LASSO:

minimize
x

1

2
‖Ax− b‖22 + τ‖x‖1.

Taking

f (x) =
1

2
‖Ax− b‖22 and g(z) = τ‖z‖1,

we can rewrite this in ADMM form as

minimize
x,z

f (x) + g(z) subject to x− z = 0.

The x update is

xk+1 = arg min
x

(
1

2
‖Ax− b‖22 +

ρ

2
‖x− zk + µk‖22

)
.

With both zk andµk fixed, this is a regularized least-squares problem
and is equivalent to:

min
x

∥∥∥∥[A√ρ I
]
x−

[
b√

ρ(zk − µk)

]∥∥∥∥2
2

.

This problem has a closed-form solution:

xk+1 =
(
ATA + ρI

)−1 [
AT √ρ I

] [b√
ρ(zk − µk)

]
=
(
ATA + ρI

)−1
(ATb + ρ(zk − µk))

65

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:47, April 5, 2021

The z update problem is:

minimize
z

τ‖z‖1 +
ρ

2
‖z − xk+1 − µk‖22.

You may recognize this: it is the proximal operator for the `1-norm,
which as we have seen before has closed form solution:

zk+1 = Tτ/ρ(xk+1 + µk),

where Tλ(·) is the term-by-tern soft-thresholding operator,

(Tλ(v))[n] =


v[n]− λ, v[n] > λ,

0, |v[n]| ≤ λ,

v[n] + λ, v[n] < −λ.

To summarize:

ADMM iterations for the LASSO

xk+1 =
(
ATA + ρI

)−1
(ATb + ρ(zk − µk)),

zk+1 = Tτ/ρ(xk+1 + µk),

µk+1 = µk + xk+1 − zk+1.

66

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:47, April 5, 2021

Convergence properties

We will state one convergence result. If the following two conditions
hold:

1. f and g are closed, proper, and convex (i.e., their epigraphs are
nonempty closed convex sets),

2. strong duality holds,

then

• Axk +Bzk − c→ 0 as k →∞. That is, the primal iterates
are asymptotically feasible.

• f (xk) + g(zk) → f (x?) + g(x?) as k → ∞. That is, the
value of the objective function approaches the optimal value
asymptotically.

• νk → ν? as k →∞, where ν? is a dual optimal point.

Under additional assumptions, we can also have convergence to a
primal optimal point, (xk, zk)→ (x?, z?) as k →∞.

See [BPC+10, Section 3.2] for further discussion and references.

67

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:47, April 5, 2021

Convex constraints

Using a technique that we have seen before, we can write the general
program

minimize
x∈C

f (x),

where C is a closed convex set, in ADMM form as

minimize
x∈RN

f (x) + g(z) subject to x− z = 0,

where g(z) is the indicator function for C:

g(z) =

{
0, z ∈ C,
∞, z 6∈ C.

Note that in this case, the z update is a closest-point-to-a-convex-set
problem. For fixed v ∈ RN :

arg min
z

g(z) +
ρ

2
‖z − v‖22 = arg min

z∈C
‖z − v‖2 = PC(v).

ADMM iteration for general convex constraints:

xk+1 = arg min
x

(
f (x) +

ρ

2
‖x− zk + µk‖22

)
,

zk+1 = PC (xk+1 + µk) ,

µk+1 = µk + xk+1 − zk+1.

Of course, this algorithm is most attractive when we have a fast
method for computing PC(·).

68

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:47, April 5, 2021

Example: Basis Pursuit

As we have seen before, a good proxy for finding the sparsest solution
to an underdetermined system of equations Ax = b is to solve

minimize
x

‖x‖1 subject to Ax = b.

To put this in ADMM form, we are solving

minimize
x,z

f (x) + g(z) subject to x− z = 0,

with

f (x) = ‖x‖1, and g(z) =

{
0, Az = b,

∞, otherwise.

The projection onto C = {x : Ax = b} can be given in closed form
using the pseudo-inverse c of A as

PC(v) = A†(b−Av) + v

= (I−AT(AAT)−1A)v +AT(AAT)−1b,

where the last equality comes from A† = AT(AAT)−1 when A has
full row rank.

The updates in this case are

xk+1 = arg min
x

(
‖x‖1 +

ρ

2
‖x− zk + µk‖22

)
= T1/ρ(zk − µk)

zk+1 = (I−AT(AAT)−1A)(xk+1 + µk) +AT(AAT)−1b

µk+1 = µk + xk+1 − zk+1.

69

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:47, April 5, 2021

Example: Linear programming

Consider the general linear program

minimize
x

cTx subject to Ax = b, x ≥ 0,

where A is an M ×N matrix with full row rank.1 We can put this
in ADMM form by first eliminating the equality constraints, then
introducing the indicator function for the non-negativity constraint.

Let Q be an N × (N −M) matrix whose columns span Null(A),
and let x0 be any point such that Ax0 = b. Then we can re-write
the LP as

minimize
w

cT(x0 +Qw) subject to x0 +Qw ≥ 0,

which we can write in ADMM form as

minimize
w

cTx0 + cTQw + g(z) subject to Qw − z = −x0,

where

g(z) =

{
0, z ≥ 0,

∞, otherwise.

(We can drop the cTx0 from the objective since it does not depend
on either of the optimization variables.)

Notice that when Q has full column rank, the program

minimize
w

vTw +
1

2
‖Qw − y‖22,

1The full row rank assumption is not at all essential; I am just making it to
keep things streamlined.

70

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:47, April 5, 2021

has the closed-form solution

w? = (QTQ)−1(QTy − v).

Also, the projection onto the non-negative orthant C = {x : x ≥ 0}
is

PC(v) = (v)+, or (PC(v))[n] =

{
v[n], v[n] ≥ 0,

0, v[n] < 0.

For the general linear program, then, the ADMM iterations are

wk+1 = arg min
w

(
1

ρ
cTQw +

1

2
‖Qw − zk + x0 + µk‖22

)
= (QTQ)−1

[
QT(zk − x0 − µk)−

1

ρ
QTc

]
,

zk+1 = PC(Qwk+1 + x0 + µk)

= (Qwk+1 + x0 + µk)+
µk+1 = µk +Qwk+1 − zk+1 + x0.

Notice that especially when the columns ofQ are orthogonal,QTQ =
I, all of these steps are very simple.

References

[BPC+10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2010.

71

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:47, April 5, 2021

