
Alternating direction primal dual methods

We will now focus on a class of algorithms that work by fixing the
dual variables and updating the primal variables x, then fixing the
primals and updating the dual variables λ,ν. An excellent source
for this material is [BPC+10]. In fact, what follows here is basically
a summary of the first 12 pages of that paper.

We have seen that when we have strong duality (which we will assume
throughout), the optimal value of the primal program is equal to
the optimal value of the dual program. That is, if x?,λ?,ν? are
primal/dual optimal points,

f (x?) = d(λ?,ν?)

= inf
x∈RN

L(x,λ?,ν?),

where L is the Lagrangian

L(x,λ,ν) = f (x) +
M∑
m=1

λmgm(x) + 〈Ax− b,ν〉.

If L(x,λ?,ν?) has only one minimizer,1 then we can recover the
primal optimal solution x? from the dual-optimal solution λ?,ν? by
solving the unconstrained program

x? = arg min
x∈RN

L(x,λ?,ν?).

“Alternating” methods search for a saddle point of the Lagrangian
by fixing the dual variables λk,νk, minimizing L(x,λk,νk) with
respect to x, then updating the Lagrange multipliers.

1Which is the case when f is strictly convex, and in many other situations.

59

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 8:45, March 31, 2021



To start, we will base our discussion on equality constrained
problems. Incorporating inequality constraints will be natural after
we have developed things a bit.

Dual ascent

We want to solve

minimize
x∈RN

f (x) subject to Ax = b.

We will assume that the domain of f is all of RN ; again, things are
easily modified if this is any open set. The Lagrangian is

L(x,ν) = f (x) + 〈Ax− b,ν〉,

and the dual function is

d(ν) = inf
x
L(x,ν)

= inf
x
f (x) + 〈Ax,ν〉 − 〈b,ν〉

= − sup
x

(
〈x,−ATν〉 − f (x

)
− 〈b,ν〉

= −f ∗(−ATν)− 〈b,ν〉

and the dual problem is

maximize
ν∈RN

d(ν).

Consider for a moment the problem of maximizing the dual. A rea-
sonable thing to do would be some kind of gradient ascent:2

νk+1 = νk + αk∇d(νk),

2“Ascent” instead of “descent” because g is concave instead of convex.

60

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 8:45, March 31, 2021



where αk is some appropriate step size. The gradient of d (with
respect to ν) at a point ν0 is

∇d(ν0) = ∇ inf
x

(f (x) + 〈ν0,Ax− b〉) ,

and so if x+ = arg minx (f (x) + 〈ν0,Ax− b〉), then

∇d(ν0) = ∇ν (f (x+) + 〈ν0,Ax
+ − b〉)

= Ax+ − b.
This leads naturally to:

The dual ascent algorithm consists of the iteration

xk+1 = arg min
x

L(x,νk)

νk+1 = νk + αk(Axk+1 − b)

that is repeated until some convergence criteria is met.

This algorithm “works” under certain assumptions on f (that trans-
late to different assumptions on the dual d). In particular, we need
L(x,ν) to be bounded for every ν, otherwise the primal update
xk+1 = arg minx L(x,νk) can fail.

That the Lagrangian is bounded below for every choice of ν is far
from a given. For example, a program of the form

minimize
x

〈x, c〉 subject to Ax = b

will have Lagrangian

L(x,ν) = 〈x, c〉 + νT(Ax− b)

= (c +ATν)Tx− νTb,

61

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 8:45, March 31, 2021



which is unbounded below since the first term is linear in x.

Of course, this algorithm is nicest when we can solve the uncon-
strained primal update problem efficiently.

Dual decomposition

Dual ascent is simple, and it is pretty much as old an idea as convex
optimization itself. But it has a key feature that makes it very attrac-
tive (at least as a starting point) for modern computing platforms.

If the objective functional f is separable, we can also separate (i.e.,
parallelize) the primal update. Suppose we can write f (x) as a sum

f (x) =
B∑
i=1

fi(x
(i)),

where the x(i) ∈ RNi (
∑

iNi = N) are a partition of x. We can
partition the columns of A in the same way,

A =
[
A(1) A(2) · · · A(B)

]
so that

Ax =
B∑
i=1

A(i)x(i).

Notice that even with this assumption, the primal optimization pro-
gram itself is not separable, as the constraints Ax = b tie all of the
blocks together – there is still just a single right-hand side vector b.

62

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 8:45, March 31, 2021



The Lagrangian in this case is also separable:

L(x,ν) =
B∑
i=1

fi(x
(i)) + νT

(
B∑
i=1

A(i)x(i)

)
− νTb

=
B∑
i=1

[
fi(x

(i)) + νTA(i)x(i) − 1

B
νTb

]

=
B∑
i=1

Li(x(i),ν).

For fixed νk, the primal update

xk+1 = arg min
x

L(x,νk)

can be separated into B independent updates:

x
(i)
k+1 = arg min

x(i)

Li(x(i),νk)

You can imagine broadcasting the current dual iterate to B different
processors; they each compute there piece of the primal update x

(i)
k+1,

and then the results are gathered centrally to compute the dual up-
date. Notice also, though, that the hard part of the dual update,
computing Axk+1, can also be done in a decentralized manner.

63

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 8:45, March 31, 2021



The Method of Multipliers and Augmented Lagrangians

The method of multipliers (MoM) is the same idea as dual ascent,
but we smooth out (augment) the Lagrangian to make the primal
update more robust.

It should be clear that

minimize
x∈RN

f (x) subject to Ax = b,

and

minimize
x∈RN

f (x) +
ρ

2
‖Ax− b‖22 subject to Ax = b

have exactly the same set of solutions for all ρ ≥ 0.

The Lagrangian for the second program is

Lρ(x,ν) = f (x) +
ρ

2
‖Ax− b‖22 + νT(Ax− b).

This is called the augmented Lagrangian of the original problem.

Adding the quadratic term is nice – it makes (under mild conditions
on f with respect to A) the primal update minimization well-posed
(i.e., makes the dual differentiable).

Notice that the Lagrange multipliers ν appear in exactly the same
way in the augmented Lagrangian as they do in the regular La-
grangian, so the dual update does not change.

64

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 8:45, March 31, 2021



The resulting algorithm is called the method of multipliers;
we iterate

xk+1 = arg min
x

Lρ(x,νk)

νk+1 = νk + ρ(Axk+1 − b)

until some convergence criteria is met.

As a bonus, we now have a principled way of selecting the step size
for the dual update – just use ρ. To see why this makes sense, recall
the KKT conditions for x? and ν? to be a solution:

Ax? = b, ∇f (x?) +ATν? = 0.

With ρ as the step size, we have

0 = ∇Lρ(xk+1,νk), (since xk+1 is a minimizer),

= ∇f (xk+1) +AT (νk + ρ(Axk+1 − b))

= ∇f (xk+1) +ATνk+1.

So the dual update maintains the second optimality condition at
every step.

The MoM has much better convergence properties than dual ascent,
but it is no longer separable. The algorithm we look at next, the
alternating direction method of multipliers (ADMM), will build on
this idea in such a way that we do have a type of dual decomposition
for the smoothed Largrangian. In addition, it can be easily modified
to incorporate certain kinds of inequality constraints.

65

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 8:45, March 31, 2021



References

[BPC+10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2010.

66

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 8:45, March 31, 2021


