
Algorithms for constrained optimization

There are many, many constrained optimization algorithms, each
tuned to the particulars of different classes of problems. We will look
at the basics that underlie some of the more modern techniques. We
will see that the concept of duality both helps us understand how
these algorithms work, and gives us a way of determining when we
are close to the solution.

We will describe several techniques. Nearly all of these ultimately
work by replacing the constrained program with an unconstrained
program (or a series of unconstrained programs).

Eliminating equality constraints

The first approach is not so much an algorithm as a “trick” that lets
us sometimes avoid even thinking about the constraints. Programs
with linear equality constraints can always be written as programs
without, and if there are no inequality constraints then the new pro-
gram is unconstrained. To see this, suppose we are solving

minimize
x∈RN

f (x) subject to Ax = b.

Let x0 be any point satisfying Ax0 = b. Then any feasible x can
be written as x = x0 + h, where h ∈ Null(A). Note that Null(A)
is a linear subspace of dimension K = N − rank(A). If Q is a basis
for this space, we can write and h ∈ Null(A) as h = Qw. Using
this we can re-write the program above as

minimize
w∈RK

f (x0 +Qw).

Sometimes this method can be very helpful, but note that computing
x0 and Q could potentially be expensive.
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Projected gradient descent

Now suppose that we wish to solve the constrained optimization
problem

minimize
x∈C

f (x)

where f is a differentiable convex function and C is a convex set in
RN . Another way to express this problem is as the unconstrained
problem

minimize
x∈RN

f (x) + IC(x), (1)

where IC denotes the indicator function for the set C. We have previ-
ously encountered this idea in the context of duality, but in terms of
suggesting practical algorithms, this has some obvious shortcomings.
Namely, since IC(x) is non-differentiable, we cannot apply gradient-
based methods to solving (1).

However, we have encountered some algorithms for minimizing non-
smooth convex functions. One that might seem particularly well-
aligned with (1) is the proximal gradient method. Recall that
proximal gradient method applies when our objective function con-
sists of the sum of a smooth term (in this case, f ) and a nonsmooth
term (in this case, IC), resulting in the core iteration of

xk+1 = proxαkIC(xk − αk∇f (xk)).

This would yield a tractable algorithm with provable guarantees if
we can compute proxαkIC . So what does proxαkIC look like? Note that

proxαkIC(z) = arg min
x∈RN

(
IC(x) +

1

2αk
‖x− z‖22

)
= arg min

x∈C
‖x− z‖22

= PC(z),
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where PC(z) denotes the projection of z onto the set C. Note that
this holds for any αk > 0.

Thus, the core iteration of the proximal gradient method is equivalent
to

xk+1 = PC(xk − αk∇f (xk)).

That is, at each iteration we take a gradient step on f and then
re-project onto the constraint set. Notice that for any k ≥ 1, we are
always guaranteed that xk is feasible.

This algorithm is usually called projected gradient descent. It
is a very simple (but often effective) method for solving constrained
optimization problems when the projection onto the constraint set C
can be computed efficiently. Note, however, that this is not always
the case – sometimes computing this projection itself requires solving
a challenging optimization problem.

Example: Least-squares with positivity constraints

Suppose we want to solve

minimize
x∈RN

1

2
‖y −Ax‖22 subject to x ≥ 0.

This is a case where the projection onto the constraint set is relatively
simple. It is easy to argue that the projection onto the set of all
positive vectors is to simply just set all of the negative entries to
zero. The projected gradient descent iteration is then

xk+1 =
(
xk + αkA

T(y −Axk)
)
+
,

where

(z)+[i] =

{
z[i], z[i] ≥ 0,

0, z[i] < 0.
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Barrier methods

Another popular and even more flexible approach are barrier meth-
ods. These can be thought of as again replacing our constrained
problem with the unconstrained one in (1), but rather than attempt-
ing to minimize (1) directly, we instead solve a slight perturbation
of this problem. In particular, we replace the indicator function IC
with some function b such that dom b = C and b(x) → ∞ as x
approaches the boundary of C.

To make this concrete, consider the constrained program

minimize
x

f (x) subject to gm(x) ≤ 0, m = 1, . . . ,M.

In a barrier method we replace this with the unconstrained program

minimize
x

f (x) +
M∑
m=1

B(gm(x)),

where domB = R− and B(x)→∞ as x→ 0 from the left. Again,
unless B is the indicator function, the new program is an approxi-
mation to the original.

An interesting choice is B(x) = −1
τ

log(−x). This particular barrier
function has the properties:

• You can analyze the number of Newton iterations needed for
convergence for many f of interest (using self-concordance).
This is done very nicely in Chapters 9 and 11 of [BV04].
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• The solution1 x?(τ ) of

minimize
x

τf (x)−
M∑
m=1

log(−gm(x))

can be used to generate a dual-feasible point (and hence a
primal-dual gap certificate), and can be related to the KKT
conditions for the original program.

To appreciate the second point above, we start by taking the gradient
of the objective function above and setting it equal to zero. We see
that

τ∇f (x?(τ )) +
M∑
m=1

− 1

gm(x?(τ ))
∇gm(x?(τ )) = 0.

So if we take

λ?m(τ ) = − 1

τgm(x?(τ ))
, m = 1, . . . ,M,

we have λ?m(τ ) ≥ 0 and

f (x?(τ )) +
M∑
m=1

λ?m(τ )∇gm(x?(τ )) = 0.

Since x?(τ ) is primal feasible, the only KKT condition we are missing
is complementary slackness – we have replaced the condition

λ?mgm(x?) = 0, with λ?m(τ )gm(x?(τ )) = −1/τ.

So if we set τ to be increasingly large, we obtain points that satisfy
an increasingly tight approximation to the KKT conditions.

1We have multiplied the objective by τ to make some of what follows a little
easier to express.
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With this choice of λ?(τ ), we can also easily compute the dual of the
original program:

d(λ?(τ )) = inf
x

(
f (x) +

M∑
m=1

λ?m(τ )gm(x)

)

= f (x?(τ )) +
M∑
m=1

λ?m(τ )gm(x?(τ ))

= f (x?(τ ))−M/τ.

Hence, we know that if x? is a solution to the original program, then

f (x?(τ ))− f (x?) ≤ f (x?(τ ))− d(λ?(τ )) ≤ M/τ.

Thus, we know that solving the log-barrier problem gets us within
M/τ of the optimal of the original primal objective.

A full discussion of log barrier methods, including some fundamental
complexity analysis, can be found in [BV04, Chap. 11]. One interest-
ing theoretical result there is that, with a reasonable way of adjusting
τ (multiplying it by 10 at every iteration, for example), the number
of log-barrier iterations to make the value of the barrier functional
f (x?(τ )) agree with the minimal value p? to the original constrained
problem to some precision. The upshot is that there is a very close
match after ∼

√
M iterations. This means that in theory, solving a

constrained problem is roughly as expensive as solving
√
M uncon-

strained problems. In practice, it is actually much cheaper – standard
log barrier iterations take maybe 20–50 iterations to produce good
results.

56

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 11:36, March 29, 2021



Primal dual interior point methods

These are closely related to log barrier algorithms, but they take a
more direct approach towards “solving” the KKT conditions. The
general idea is to treat the KKT conditions like a set of nonlinear
equations, and solve them using Newton’s method.

We start with the same set of relaxed KKT conditions2 we used with
log barrier:

rτ(x,λ) =


∇f (x) +

∑
m λm∇gm(x)

−λ1g1(x)− 1/τ
...

−λmgm(x)− 1/τ


If we find x and λ such that the N + M -vector rτ(x,λ) = 0, then
we know we have found the same x?(τ ), λ?(τ ) that solve the log
barrier problem.

Primal-dual interior point methods take Newton steps to try to make
rτ = 0, but they adjust τ at every step. The Newton step is char-
acterized by

rτ(x + δx,λ + δλ) ≈ rτ(x,λ) + J r(x,λ)

[
δx
δλ

]
= 0,

where J rτ (x,λ) is the Jacobian matrix for the vector-valued func-

2We are again only considering inequality constraints; it is straightforward
to modify everything we say here to include linear equality constraints.
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tion rτ given by
∇2f (x) +

∑
m λm∇2gm(x) ∇g1(x) ∇g2(x) · · · ∇gM(x)

−λ1∇g1(x)T − g1(x) 0 · · · 0
−λ2∇g2(x)T 0 −g2(x) · · · 0

... . . .
−λM∇gM(x)T 0 0 · · · −gM(x)

 .
The update direction is[

δx
δλ

]
= −J−1rτ rτ(x,λ).

With this direction, we can perform a line search. The parameter τ
is updated at every step (getting larger) based on an estimate of the
duality gap.

A key feature of this type of primal dual method is that the iterates
xk and λk do not have to be feasible (although they of course become
feasible in the limit).

Details on this particular algorithm, along with a full convergence
analysis, can be found in [BV04, Chap. 11.7].
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