
Fenchel duality

Last time we began by showing that if we consider the unconstrained
problem

minimize
x

f (x) + g(x) (1)

where f and g are both convex, we can derive the equivalent dual
problem

maximize
ν

−f ∗(ν)− g∗(−ν). (2)

Recall from our first discussion of Lagrange duality that the dual
problem provides a lower bound for the primal problem, or in the
language of the problems above, we have

inf
x
f (x) + g(x) ≥ sup

ν
−f ∗(ν)− g∗(−ν).

Moreover, under certain conditions we have strong duality. In this
setting, strong duality implies that the above inequality will hold
with equality, i.e.,

inf
x
f (x) + g(x) = sup

ν
−f ∗(ν)− g∗(−ν). (3)

Fenchel’s Duality Theorem tells us that under certain reg-
ularity assumptions on f and g, we have strong duality and (3)
holds.1 Specifically, if D = dom f and C denotes the set of x ∈ RN

where g is finite and continuous, then (3) holds whenever there exists
an x̄ ∈ D ∩ C.

1In our discussion here as well as when reviewing Lagrangian duality, we
have assumed that infx f(x) + g(x) is finite (so that these quantities are
even defined). If the primal (or dual) is not bounded, then there is no
solution to the optimization problem and strong duality will not hold.
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Note that if g(x) is the indicator for a convex set C, then this is
equivalent to a constrained optimization problem, and the conditions
above are equivalent to the assumption that there is a strictly feasible
point in dom f , i.e., Slater’s condition. In this case we can also
write (3) more cleaning if we define a new function h′C(ν) which is
related to the support function of C, just with an infimum instead of
a supremum:

h′C(ν) = inf
x∈C
〈x,ν〉 = − sup

x∈C
〈x,−ν〉 = −hC(−ν).

With this notation we can re-write (3) for the case of standard con-
strained optimization as

inf
x∈C

f (x) = sup
ν

h′C(ν)− f ∗(ν). (4)

We will not do so here, but from this point you can actually show that
if our constraints match the form that is assumed in our discussion
of Lagrangian duality, then the right-hand side of (4) exactly cor-
responds to the Lagrangian dual problem. In this sense Lagrangian
duality is just a special case of Fenchel duality.

Super-Easy Example

Before we look at serious applications of Fenchel duality, let’s look at
a very simple example just to get a feel for the computations involved.
We will compute

inf
x∈[3,5]

x3.

Of course, we know the answer already: it is 27, as the function above
achieves its minimum value at x̂ = 3. But let’s verify the Fenchel
duality theorem for this case.
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We will take f (x) = x3 which is convex over the non-negative reals,
so we take D = {x : x ≥ 0}. The constraint set is the interval
C = [3, 5]. First we compute

h′C(ν) = inf
x∈[3,5]

νx =

{
3ν, ν ≥ 0,

5ν, ν < 0.

The conjugate of f is

f ∗(ν) = sup
x≥0

(νx− x3).

For fixed ν ≥ 0, this expression is maximized at x? =
√
ν/3; for

ν < 0 it is maximized at x? = 0. Thus

f ∗(ν) =

{
2
3

√
ν3

3
, ν ≥ 0,

0, ν < 0.

Thus

max
ν∈R

[h′C(ν)− f ∗(ν)] = max
ν∈R

{
3ν − 2

3

√
ν3

3
, ν ≥ 0,

5ν, ν < 0.

It is easy to check that this expression is maximized at ν? = 27
(coincidence), and that3ν − 2

3

√
ν3

3

∣∣∣∣∣∣
ν=27

= 27.
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Example: Resource allocation [Lue69]

The “law of diminishing returns” is a fundamental tenet of economics:
as we put more and more resources into something, at some point,
the incremental gains become less and less. You see this everywhere:
what is the difference between spending $5 on dinner, $50 on dinner,
$500 on dinner? What are the differences between a $50 bicycle, a
$500 bicycle, and a $5000 bicycle?

What this means is that functions f (x) that map resources to return
are concave.

Suppose we have D dollars that we would like to allocate to N differ-
ent activities in such a way that maximizes the return. The return of
each activity is a (possibly different) concave function fn(xn), where
xn is the amount of money invested. Our optimization problem is

maximize
x∈RN

f (x) =
N∑
n=1

fn(xn) subject to
N∑
n=1

xn = D

x ≥ 0,

or equivalently

minimize
x∈RN

f̃ (x) = −f (x) subject to
N∑
n=1

xn = D

x ≥ 0,

This is a convex optimization problem in N variables, and of course
its solution depends on what we actually choose for the return func-
tions fn(xn). However, by using Fenchel duality, we can recast this
problem as an optimization in a single variable.
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Since the natural domain of the fn is x ≥ 0, let’s take

D = {x : x ≥ 0}, C = {x : x1 + · · · + xN = D}.
We start by computing

h′C(ν) = inf
x∈C
〈x,ν〉.

Since C is itself an affine set, h′C(ν) is unbounded below for almost
every ν we plug in – the exception is if all of the entries of ν are
equal to one another. In this case,

ν = λ1, hC(ν) = Dλ,

where 1 is an N -vector of all ones. Thus, we have

h′C(ν) =

{
D1Tν, ν ∈ Range(1)

−∞, otherwise.

Now we compute the conjugate f̃ ∗(ν) of f̃ (x) = −f (x). Since f̃ is
a sum of convex functions of independent variables,

f̃ ∗(ν) =
N∑
n=1

f̃ ∗n(νn),

where f̃ ∗n(νn) is the conjugate of a function of a single variable:

f̃ ∗n(νn) = sup
x≥0

[
νnx− f̃n(x)

]
.

This means we can write the dual as

max
ν

[
h′C(ν)− f̃ ∗(ν)

]
= max

λ∈R

[
Dλ−

N∑
n=1

f̃ ∗n(λ)

]
.

That is, the expression to be minimized is a function of a single
variable λ. All we need to know how to do is evaluate the conjugate
functions f̃ ∗n.
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Example: Norm minimization

Here we look at an example of how we can apply Fenchel duality
to provide an alternative characterization of a common constrained
optimization program. Consider the “norm minimization” problem:

minimize
x

‖x‖ subject to Ax = y,

where the vector y ∈ RM and matrix A ∈ RM×N are given and we
assume that rank(A) is at most N so that we are guaranteed that
there is at least one feasible solution. Here the norm in the objective
function is an arbitrary norm. We will derive the dual for the general
case, which could then be specialized to tell us something about least
squares (for the `2 norm), “Basis Pursuit” (for the `1 norm), or the
result for any choice of norm.

We have already calculated f ∗(ν) for the case where f (x) = ‖x‖. In
this case f ∗(ν) is the indicator function for the set {ν : ‖ν‖∗ ≤ 1}.
If we plug this into (4) we see that the objective function will be
−∞ unless ‖ν‖∗ ≤ 1, and thus we can equivalently write the dual
problem as

maximize
ν

h′C(ν) subject to ‖ν‖∗ ≤ 1,

where C = {x : Ax = y}. This, it remains to calculate h′C(ν).

We first note that if 〈u,ν〉 6= 0 for some u ∈ Null(A), then h′C(ν) =
−∞. To see this, note that if u ∈ Null(A) then for any x ∈ C and
t ∈ R, A(x + tu) = y. Thus, x + tu ∈ C, and 〈x + tu,ν〉 =
〈x,ν〉 + t〈u,ν〉, which is unbounded since t can be arbitrary.
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What remains is to calculate h′C(ν) for ν that are orthogonal to
Null(A). Recall that this is equivalent to the assumption that ν ∈
Range(AT). For any such ν we can write ν = ATw for some
w ∈ RM , in which case

inf
x∈C
〈x,ν〉 = inf

x∈C
〈x,ATw〉

= inf
x∈C
〈Ax,w〉

= inf
x∈C
〈y,w〉

= 〈y,w〉.

Thus, if we replace ν in our dual problem with ATw and optimize
over w instead, we arrive at the dual problem

maximize
w

〈y,w〉 subject to ‖ATw‖∗ ≤ 1.

As an example, if we consider the `1-norm minimization problem
(also known as “Basis Pursuit”) where ‖·‖ = ‖·‖1, the dual becomes

maximize
w

〈y,w〉 subject to ‖ATw‖∞ ≤ 1.

Note that this is a standard linear program. This can be a useful
observation from a computational perspective, but later in the course
we will show how Fenchel duality for this problem can also be used to
provide a theoretical characterization of the properties (e.g., sparsity)
of the solution x? of the primal problem.
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