
A second look at duality

Our first exposure to duality was in the context of constrained op-
timization: by introducing dual variables (Lagrange multipliers), we
can combine the objective function and constraints into a single (La-
grangian) function which we can optimize either by minimizing it
with respect to the primal variables or maximizing it with respect to
the dual variables.

However, duality is a much broader concept than what we have seen
so far, and can even be relevant in unconstrained problems.1 As an
example, suppose we wish to minimize the sum of two functions:

minimize
x∈RN

f (x) + g(x) (1)

where f and g are both convex. For simplicity, we will assume that
dom f = dom g = RN , although we could easily extend this to the
case where the domain is a subset of RN by replacing f and/or g
with their extension to RN . This problem is unconstrained, but we
can actually represent it as a constrained problem of the form:

minimize
x,z∈RN

f (x) + g(z) subject to x = z.

This formulation involves N affine equality constraints on the pri-
mal variables x and z of the form hn(x, z) = zn − xn = 0. The
Lagrangian function for this problem is

L(x, z,ν) = f (x) + g(z) + 〈z − x,ν〉.

1Moreover, as we will soon see, if you give up on the requirement that your
objective function is differentiable, the distinction between constrained
and unconstrained problems becomes a bit blurred.
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To derive the dual problem, we first must compute the dual function:

d(ν) = inf
x,z∈RN

f (x) + g(z) + 〈z − x,ν〉
= inf

x∈RN
f (x)− 〈x,ν〉 + inf

z∈RN
g(z)− 〈z,−ν〉

= − sup
x∈RN

〈x,ν〉 − f (x)︸ ︷︷ ︸
f∗(ν)

− sup
z∈RN

〈z,−ν〉 − g(z)︸ ︷︷ ︸
g∗(−ν)

,

where
f ∗(ν) := sup

x∈RN

〈x,ν〉 − f (x)

is the convex conjugate (or Fenchel conjugate) of f . We will
try to give a bit more intuition into what the convex conjugate of a
function represents below, but first we note that if we can calculate
this function, then the resulting dual problem is

maximize
ν∈RN

− f ∗(ν)− g∗(−ν)

or equivalently
minimize
ν∈RN

f ∗(ν) + g∗(−ν). (2)

Before we can see this in action on some real optimization problems,
however, we first need to understand what the convex conjugate is
and, given a function f , how to actually compute f ∗.
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The convex conjugate

Before going any further, the first thing to say about the convex
conjugate is that it is, as its name might suggest, convex. In fact,
f ∗(ν) is convex, even if f (x) is not. We have seen the argument
for this before: f ∗(ν) is the pointwise supremum of convex functions
since for any fixed x, 〈x,ν〉 − f (x) is a convex (affine) function).

The convex conjugate plays a fundamental role in duality. Before
we assumed that dom f = RN , but it will sometimes be useful to be
explicit about the domain. If we let D = dom f , then the convex
conjugate of f is

f ∗(ν) = sup
x∈D
〈x,ν〉 − f (x).

There are multiple ways to think about the convex conjugate. Per-
haps the most natural is simply that f ∗(ν) is simply the maximum
amount that the linear functional 〈x,ν〉 exceeds f (x).

Let’s consider a particular example in one dimension (N = 1). Sup-
pose

f (x) = x2 − 2x + 2 = (x− 1)2 + 1.

We have

f ∗(ν) = sup
x∈R

(
νx− x2 + 2x− 2

)
=
ν2

4
+ ν − 1.

(You can verify the second equality by taking the derivative with
respect to x, setting this to zero, and solving for x. This results in
x = ν

2
− 1, and plugging this in yields the result above.)
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Here is an example of what is happening:

f (x)

x

νx

− f ∗(ν )

x�

Here we illustrate a function f (x) overlayed with νx for an example
value of ν. The vertical difference between the two functions is
maximized at a particular value x?, and this distance is f ∗(ν).

Another way to think about f ∗(ν) is that it tells us how far we need
to shift νx down so that it will be tangent to f (x) (or a subgradient
of f at x if f is not differentiable), as illustrated by the dashed line.
In the case where f is differentiable, this is easy to see: since f
is convex, −f is concave and νx − f (x) will be maximized when
ν − f ′(x) = 0.
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Properties

• f ∗(ν) is convex (even when f (x) is not).

• Fenchel’s inequality: For any x and ν we have

f (x) + f ∗(ν) ≥ 〈x,ν〉.

• For any function f (x), we can define the conjugate of f ∗(ν) as

f ∗∗(x) = sup
ν∈D∗

〈ν,x〉 − f ∗(ν),

where D∗ is the domain of f ∗. For an arbitrary f (x) we have

f ∗∗(x) ≤ f (x)

• If f (x) is convex and has a closed epigraph, then taking the
conjugate of f ∗(ν) recovers f (x):

f ∗∗(x) = f (x).

• If f (x1,x2) can be written as the sum of two independent
variables:

f (x1,x2) = f1(x1) + f2(x2),

then
f ∗(a1,a2) = f ∗1 (a1) + f ∗2 (a2).

For more properties, see [BV04, Chapter 3.3].
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Examples

The Indicator Function

We define the indicator function or characteristic function
for a convex set C is given by

IC(x) =

{
0, if x ∈ C,
+∞, if x /∈ C.

The convex conjugate of the indicator function is

hC(ν) = I∗C(ν) = sup
x∈RN

〈x,ν〉 − IC(x)

= sup
x∈C
〈x,ν〉.

The function hC(ν) is also called the support function of C. The
support function defines a vector ν ∈ RN that defines a linear func-
tion on C and then returns the maximum value of that linear function
over C.

Geometrically, this corresponds to taking the half-space {x : 〈x,ν〉 ≤
b} and then determines how large b needs to be to ensure that
the half-space contains all of C (since by definition we will have
〈x,ν〉 ≤ hC(ν) for all x ∈ C).

This is illustrated with an example on the following page.
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1 2

C

{x : x, = 3.89}

1

2

3

3

ν

ν

ν =
1√
2

[
1
1

]
hC(ν) = 3.89

1 2

C

1

2

3

3
{x : x, = 3}

ν

ν

ν =

[
0
1

]
hC(ν) = 3

{x : x, = −1.41}

1 2

C

1

2

3

3

ν

ν

ν = − 1√
2

[
1
1

]
hC(ν) = −1.41
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Norms

As we have already seen on many occasions, norms frequently arise
in optimization problems as either objective functions or constraints,
and so their convex conjugates are important to be able to compute
and work with. Before discussing the general case, let’s look at what
happens for f (x) = ‖x‖2 to get an idea of what we will need to do.
In this case we have

f ∗(ν) = sup
x∈RN

〈x,ν〉 − ‖x‖2
= sup

x∈RN

‖x‖2‖ν‖2 − ‖x‖2
= sup

x∈RN

‖x‖2(‖ν‖2 − 1),

where the second inequality above follows from Cauchy-Schwarz (which
can be made to hold with equality). There are two cases to consider
here. If ‖ν‖2 ≤ 1, then we are trying to maximize a non-positive
quantity, which we can do simply by setting x = 0, resulting in
f ∗(ν) = 0. However, if ‖ν‖2 > 1 then ‖x‖2(‖ν‖2− 1) can be made
arbitrarily large. Thus

f ∗(ν) =

{
0, if ‖ν‖2 ≤ 1,

+∞, if ‖ν‖2 > 1.

In other words, f ∗(ν) is the indicator function for the unit ball cor-
responding to ‖ · ‖2.

Now suppose that f (x) = ‖x‖ where ‖ · ‖ denotes an arbitrary
norm. To extend the argument above, we will need to introduce a
new quantity that may not seem intuitive at first but is quite natural
once you see how it is used.
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Specifically, for any norm ‖ · ‖, we can consider the dual norm,
which is defined as

‖ν‖∗ = sup
x:‖x‖≤1

〈x,ν〉.

Note that this is the support function (the convex conjugate of the
indicator function) of the unit ball corresponding to ‖ · ‖. Moreover,
as a direct consequence of the definition of the dual norm we have

〈x,ν〉 ≤ ‖x‖‖ν‖∗.
This is exactly what we need to extend our previous argument.

We again begin with setting f (x) = ‖x‖ and wish to compute

f ∗(ν) = sup
x∈RN

〈x,ν〉 − ‖x‖

As before, we can consider two cases. If ‖ν‖∗ ≤ 1 then

〈x,ν〉 − ‖x‖ ≤ ‖x‖‖ν‖∗ − ‖x‖ ≤ 0.

In this case the largest we can make f ∗(ν) is zero (by setting x = 0).
On the other hand, if ‖ν‖∗ > 1 then there must exist an x such that
〈x,ν〉 ≥ ‖x‖. If we replace this x by a rescaled version tx, then we
can make

〈tx,ν〉 − ‖tx‖ = t(〈x,ν〉 − ‖x‖)
arbitrarily large. Thus we have

f ∗(ν) =

{
0, if ‖ν‖∗ ≤ 1,

+∞, if ‖ν‖∗ > 1,

i.e., f ∗(ν) is the indicator function for the unit ball corresponding to
the dual norm ‖ · ‖∗.
For lots of other examples, see [BV04, Chapter 3.3].
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