
The Karush-Kuhn-Tucker (KKT) conditions

For several lectures we have been alluding to the Karush-Kuhn-
Tucker (KKT) conditions. We are finally in a position to pro-
vide an intuitive account of what these are and where they come
from. Simply put, the KKT conditions are a set of sufficient (and
at most times necessary) conditions for an x? to be the solution of a
given convex optimization problem. The conditions involve the ex-
istence of Lagrange multipliers satisfying certain natural properties,
and they play a fundamental role in both the theory and practice of
convex optimization.

We will start here by considering a general convex program with
inequality constraints only. Specifically, we will consider the convex
program given by

minimize
x∈RN

f (x) (1)

subject to gm(x) ≤ 0, m = 1, . . . ,M.

Note that our initial restriction to inequality constraints only is
merely to make the exposition easier – after we have this established,
we will show how to include equality constraints (which must always
be affine in convex programming).

Our analysis of the KKT conditions will exploit concepts from La-
grange duality. Recall that the Lagrangian for (1) is given by

L(x,λ) = f (x) +
M∑

m=1

λmgm(x),

the Lagrange dual function is given by

d(λ) = inf
x∈RN
L(x,λ),
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and the associated dual problem is given by

maximize
λ∈RM

d(λ) subject to λ ≥ 0. (2)

Here and throughout this lecture, we assume that the functions
f (x), g1(x), . . . , gM(x) are convex and differentiable. The KKT con-
ditions for the optimization program in (1) are as follows.

KKT (inequality only)
The KKT conditions for x ∈ RN and λ ∈ RM are

gm(x) ≤ 0, m = 1, . . . ,M, (K1)

λm ≥ 0, m = 1, . . . ,M, (K2)

λmgm(x) = 0, m = 1, . . . ,M, (K3)

∇f (x) +
M∑

m=1

λm∇gm(x) = 0. (K4)

Below we will argue that under certain conditions, a necessary and
sufficient condition for x? to be a solution to (1) is for there to exist
some λ? such that x? and λ? satisfy the KKT conditions. Moreover,
under the same conditions, a necessary and sufficient condition for
λ? to be a solution to (2) is for there to exist some x? such that x?

and λ? satisfy the KKT conditions.
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Sufficiency

We start by establishing that these are sufficient.

Suppose that f (x), g1(x), . . . , gM(x) are convex and differen-
tiable. If the KKT conditions hold for some x? ∈ RN and some
λ? ∈ RM , then x? is a solution to (1) and λ? is a solution to (2).

Suppose that x′ and λ′ satisfy the KKT conditions. We will not use
the notation x? and λ? just yet to avoid any confusion, since we have
not yet proven that they are solutions. We begin by noting that K4
is equivalent to the condition that

∇xL(x′,λ′) = 0.

Since f and g1, . . . , gM are convex, this implies that x′ is a minimizer
of L(x,λ′), i.e.,

L(x′,λ′) ≤ L(x,λ′)

for all x ∈ RN . This implies that

d(λ′) = L(x′,λ′),

and thus

d(λ′) = f (x′) +
M∑

m=1

λ′mgm(x′)

= f (x′),

where the last equality follows from (K3).

Recall that for any feasible x and λ we always have d(λ) ≤ f (x).
Since (K1) and (K2) ensure that x′ and λ′ are both feasible, the
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above result implies that x′ is a solution to (1) and λ′ is a solution
to (2): for any feasible x we have f (x) ≥ d(λ′) = f (x′) and for any
λ ≥ 0 we have d(λ) ≤ f (x′) = d(λ′).

Note that along the way we have also shown that the existence of
x,λ satisfying the KKT conditions also implies strong duality.

Necessity

We have just shown that for any convex problem of the form (1), if
we can find a x?,λ? satisfying the KKT conditions, then x? must be
a solution to (1). However, this on its own does not ensure that for
any solution x? we must necessarily be able to find a λ? such that
x?,λ? obey the KKT conditions. Indeed, we do not necessarily even
know if a x,λ satisfying the KKT conditions exists.

Here we show that if we make the additional assumption that strong
duality holds (for example, if our constraints satisfy Slater’s condi-
tion), then the KKT conditions are also necessary.

Suppose that f (x), g1(x), . . . , gM(x) are convex and differen-
tiable. Let x? be a solution to (1) and λ? be a solution to (2).
If strong duality holds (e.g., Slater’s condition holds) then x? and
λ? obey the KKT conditions.

We trivially have (K1) and (K2) simply because x? and λ? must be
feasible to be solutions to (1) and (2) respectively. We very nearly
proved the remaining conditions last time without explicitly saying
so. In particular, we previously argued that if we have strong duality
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then

f (x?) = d(λ?)

= inf
x∈RN

(
f (x) +

M∑
m=1

λ?
mgm(x)

)

≤ f (x?) +
M∑

m=1

λ?
mgm(x?)

≤ f (x?). (3)

where the last inequality follows from the facts that we must have
λ?
m ≥ 0 and gm(x?) ≤ 0. Looking at this entire chain of inequalities,

where the first and last term are both f (x?), means that

f (x?) = min
x∈RN
L(x,λ?) = L(x?,λ?).

Since f (x), g1(x), . . . gM(x) are convex and differentiable, so isL(x,λ?)
for any λ? ≥ 0. Thus, if x? is a minimizer of L(x,λ?) then we must
have ∇L(x?,λ?) = 0, which is precisely (K4).

Moreover, the chain of (in)equalities concluding in (3) also implies
that

M∑
m=1

λ?
mgm(x?) = 0.

Since each λ?
mgm(x?) is non-positive, the only way the sum can equal

zero is if every term is zero, which yields (K3).
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KKT conditions with equality constraints

Now suppose that we have an optimization problem involving equal-
ity constraints:

minimize
x∈RN

f (x) (4)

subject to gm(x) ≤ 0, m = 1, . . . ,MI

hm(x) = 0, m = 1, . . . ,ME.

Using essentially the same arguments as before, we can show that
the following KKT conditions on x, λ, and ν are sufficient for x and
(λ,ν) to be solutions of (4) and its dual, respectively. Moreover, if
strong duality holds they are also necessary.

KKT (with equality constraints)
The KKT conditions for x ∈ RN , λ ∈ RMI , and ν ∈ RME are

gm(x) ≤ 0, m = 1, . . . ,MI, (K1)

hm(x) = 0, m = 1, . . . ,ME,

λm ≥ 0, m = 1, . . . ,MI, (K2)

λmgm(x) = 0, m = 1, . . . ,MI, (K3)

∇f (x) +
MI∑
m=1

λm∇gm(x) +
ME∑
m=1

νm∇hm(x) = 0. (K4)
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Example: Support vector machines

Consider the following fundamental binary classification problem.
We are given points x1, . . . ,xM ∈ RN with class labels y1, . . . , yM ,
where ym ∈ {−1,+1}. We would like to find a hyperplane (i.e.,
affine functional) which separates the classes:

H1

H2

H3

H1 and H2 above both separate the classes in R2, but H3 does not.
While separating the classes is obviously desirable, we still need a
good method to choose from among the many hyperplanes that do
separate the classes – and some will perform better than others. Sup-
port vector machines (SVMs) take the one with maximum margin,
i.e., we choose the hyperplane that maximizes the distance to the
closest point in either class.
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To restate this, we want to find a w ∈ RN and b ∈ R such that

〈xm,w〉 − b ≥ 1, when ym = 1,

〈xm,w〉 − b ≤ −1, when ym = −1.

Of course, it is possible that no separating hyperplane exists; in this
case, there will be no feasible points in the program above. It is
straightforward, though, to modify this discussion to allow “misla-
beled” points.

In the formulation above, the distance between the two (parallel)
hyperplanes is 2/‖w‖2:

〈xm,w〉 − b = 1

〈xm,w〉 − b = −1

〈xm,w〉 − b = 0

2

‖w‖2

Thus maximizing this distance is the same as minimizing ‖w‖2.
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This leads to the program

minimize
w∈RN , b∈R

1

2
‖w‖22

subject to ym(b− 〈xm,w〉) + 1 ≤ 0, m = 1, . . . ,M.

This is a linearly constrained quadratic program, and is clearly con-
vex. The Lagrangian is

L(w, b,λ) =
1

2
‖w‖22 +

M∑
m=1

λm [ym(b− 〈xm,w〉) + 1]

=
1

2
‖w‖22 + bλTy − λTXTw + λT1,

where X is the N ×M matrix

X =

y1x1 y2x2 · · · yMxM

 .
The dual function is

d(λ) = inf
w,b

(
1

2
‖w‖22 + bλTy − λTXTw + λT1

)
.

Since b is unconstrained above, we see that the presence of bλTy
means that the dual will be −∞ unless 〈λ,y〉 = 0. Minimizing over
w, we need the gradient equal to zero,

∇wL(w, b,λ) = 0, ⇒ w −Xλ = 0.

This means that we must havew = Xλ, which itself is a very handy
fact as it gives us a direct passage from the dual solution to the primal

30

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 14:01, March 21, 2021



solution. With these substitutions, the dual function is

d(λ) =

{
1
2
‖Xλ‖22 − λTXTXλ + λT1, 〈λ,y〉 = 0,

−∞, otherwise.

Thus, the dual SVM program is then

maximize
λ

− 1

2
‖Xλ‖22 +

M∑
m=1

λm

subject to 〈λ,y〉 = 0, λ ≥ 0.

Given the solution λ? to the dual, we can take w? = Xλ?, and the
classifier is

f (x) = 〈x,w?〉 − b?
= 〈x,Xλ?〉 − b?

=
M∑

m=1

λ?
mym〈x,xm〉 − b?.

Notice that the data xm appear only through inner products with x.

A key realization about the SVM is that the for the dual program,
the objective function depends on the data xm only through inner
products, as

‖Xλ‖22 =
M∑
`=1

M∑
m=1

y`ym〈x`,xm〉.

This means that we can replace 〈x`,xm〉 with any “positive ker-
nel function” K(x`,xm) : RN ⊗ RN → R – a positive kernel just
means that the M ×M matrix K(x`,xm) is in SM

+ for all choices of
x1, . . . ,xM .
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For example, you might take

K(x`,xm) = (1 + 〈x`,xm〉)2 = 1 + 2〈x`,xm〉 + 〈x`,xm〉2.
This means we have replaced the inner product of two vectors with
the inner product between two vectors which have been mapped into
a higher-dimensional space:


x1

x2
...
xN

 →



1
x1
...
xN

x2
1

x2
2
...
x2
N√

2x1x2
...√

2xN−1xN



.

A set of linear constraints on the coordinates on the right, then,
corresponds to a second order curve constraint (parabola, ellipse,
hyperbola) on the coordinates on the left.

Many kernels are possible. The advantage is that to train and use the
classifier, you never have to explicitly move to the higher-dimensional
space – you just need to be able to compute K(x`,xm) for any pair
of inputs in RN . A popular choice of kernel is

K(x`,xm) = exp
(−γ‖x` − xm‖22

)
.

This is a perfectly valid positive kernel, and it is straightforward to
compute it for any pair of inputs. But it corresponds to mapping
the xm into an infinite dimensional space, then finding a separating
hyperplane.
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Here is an example of a linear classifier in a higher-dimensional space:

that results in a nonlinear classifier in a lower-dimensional space:
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