
Lagrange duality

In the previous lecture we looked at three examples of optimization
problems in which we aimed to minimize a convex function under
convex inequality constraints and/or affine equality constraints. In
each case we derived a set of necessary and sufficient conditions for
having found a minimizer x? that involved the introduction of some
mysterious additional variables ν and λ. Here we will provide an
alternative perspective on these problems and provide a bit more
intuition as to how to interpret these additional variables.

The Lagrangian

In this lecture we will consider an optimization program of the form

minimize
x∈RN

f (x) (1)

subject to gm(x) ≤ 0, m = 1, . . . ,MI

hm(x) = 0, m = 1, . . . ,ME.

We will focus on the case where the objective function f and the
inequality constraints gm are convex, and the equality constraints hm

are affine (note that for equality constraints, convexity is equivalent
to being affine). However, in general much of what we have to say
applies to arbitrary (nonconvex) problems as well so we will be clear
when we are or are not assuming convexity. We will take the domain
of all of the fm and hm to be all of RN below; this just simplifies the
exposition, we can easily replace this with the intersections of the
dom fm and domhm. We will also assume that the feasible set

C = {x : fm(x) ≤ 0, hm(x) = 0, for all m}

is non-empty and a subset RN .
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The Lagrangian takes the constraints in the program above and
integrates them into the objective function. Specifically, the La-
grangian L : RN × RMI × RME → R associated with (1) is

L(x,λ,ν) = f (x) +
MI∑
m=1

λmgm(x) +
ME∑
m=1

νmhm(x)

For reasons that will become clearer below, the x above are referred
to as primal variables, and the λ,ν as either dual variables or
Lagrange multipliers.

The Lagrangian allows us to transform the constrained optimization
problem in (1) into an unconstrained one. Specifically, suppose for
the moment that we are interested in a problem of the form in (1)
but without equality constraints. Consider the problem given by

minimize
x∈RN

f (x) +
M∑

m=1

λmgm(x). (2)

To get some intuition, suppose that we set the λ1, . . . , λM to be very
large (positive) numbers. In this case, violating any of the constraints
(allowing gm(x) > 0) will result in a very large penalty being added
to the objective function, so that by setting the corresponding λm to
be large we will eventually guarantee that the resulting solution will
satisfy the desired constraints.

The problem here is that large values of λm not only avoid the setting
where gm(x) > 0, but actually encourages gm(x) � 0 (since we
can potentially benefit by not just satisfying the constraints but by
exceeding them by a large margin).
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This raises a natural question: can we set λ so that the solution
to the unconstrained problem (2) is the same as the constrained
problem (1)? Here we will provide an answer in the case where the
objective function f and the constraints g1, . . . , gM are both convex
and differentiable.

Suppose that x? is a solution to the constrained problem (1). If
we want x? to be a solution to (2), then a necessary and sufficient
condition is

∇L(x?,λ) = ∇f (x?) +
M∑

m=1

λm∇gm(x?) = 0. (3)

At this point you might want to compare (3) with conditions 4 in
the second two examples from the previous lecture. (Hint: they are
the same!)

If we knew x? already, finding a λ that would make the unconstrained
and constrained problems equivalent (meaning that they both have
the same solution x?) would just amount to finding a λ such that (3)
holds. Unfortunately, this might not seem to be particularly useful
since x? is what we are trying to find to begin with.

To see how we might compute a λ that makes the unconstrained
and constrained problems equivalent, we will need to begin our first
exploration of one of the deepest and most important ideas of opti-
mization: duality.
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The Lagrange dual function

We can think of the unconstrained optimization problem (2) as ac-
tually representing a family of different optimization problems (de-
pending on λ). For any fixed λ, imagine solving (2) and computing
the minimal value of the objective function – we can think of this as
actually defining a function that maps λ ∈ RM to R. Specifically,
returning to the case where we have both inequality and equality con-
straints, the Lagrange dual function d(λ, ν) : RMI × RME → R
is the minimum1 of the Lagrangian over all x ∈ RN :

d(λ,ν) = inf
x∈RN

(
f (x) +

MI∑
m=1

λmgm(x) +
ME∑
m=1

νmhm(x)

)
.

Note that since the dual is the pointwise infimum of a family of affine
functions in λ,ν, the Lagrange dual function is always concave,
regardless of whether or not f , gm, and hm are convex. While we will
not stress this much here, this is a remarkable fact and can be very
useful when dealing with nonconvex problems.

A key fact about the dual function is that it can provide a lower
bound on the optimal value of the original program. In the discussion
below, we assume throughout that ν and λ ≥ 0 are arbitrary. Our
main claim is that if p? = f (x?) is the optimal value for (1),2 then
we have

d(λ,ν) ≤ p?.

This is very easy to show. Specifically, for any feasible point x′, we
must have gm(x′) ≤ 0 for all m and also hm(x′) = 0 for all m, and

1We are writing inf instead of min here since we in general cannot be sure
that the minimum exists. It very well may be that d(λ,ν) is −∞.

2We use p? instead of f ? to indicate the optimal value of the primal problem,
which we will soon be opposing to the optimal value of the dual problem.
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hence
MI∑
m=1

λmgm(x′) +
ME∑
m=1

νmhm(x′) ≤ 0.

From this we have that

L(x′,λ,ν) ≤ f (x′),

meaning that

d(λ,ν) = min
x∈RN
L(x,λ,ν) ≤ L(x′,λ,ν) ≤ f (x′).

Since this holds for all feasible x′, including the minimizer of (1), we
have d(λ,ν) ≤ p?.

The (Lagrange) dual problem

Given that d(λ,ν) provides a lower bound on p?, if you wanted to
get an idea of what p? looks like (for example, to see if you are close
to convergence), it is natural to see how large you can make this
lower bound. This gives rise to what we call the (Lagrange) dual
problem of (1):

maximize
λ∈RMI ,ν∈RME

d(λ,ν) subject to λ ≥ 0. (4)

The dual optimal value d? is

d? = sup
λ≥0,ν

d(λ,ν) = sup
λ≥0,ν

inf
x∈RN
L(x,λ,ν).

Since d(λ,ν) ≤ p?, we know that

d? ≤ p?.
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The quantity p?− d? is called the duality gap. If p? = d?, then we
say that (1) and (4) exhibit strong duality.

We will soon discuss when strong duality holds, but first, why is it
important? Suppose that x? is a solution to the original constrained
problem (1) – which we will call the primal problem to distinguish
it from the dual problem – and suppose that (λ?,ν?) is a solution
to the dual problem (4). It turns out that if we have strong duality,
then (λ?,ν?) is exactly what we need to make x? the solution to the
unconstrained problem (2).

To see why, note that if we have strong duality then

f (x?) = d(λ?,ν?)

= inf
x∈RN

(
f (x) +

MI∑
m=1

λ?
mgm(x) +

ME∑
m=1

ν?mhm(x)

)

≤ f (x?) +
MI∑
m=1

λ?
mgm(x?) +

ME∑
m=1

ν?mhm(x?)

≤ f (x?). (5)

where the last inequality follows from the facts that we must have
λ?
m ≥ 0 and gm(x?) ≤ 0 and that h(x?) = 0. Looking at this entire

chain of inequalities, where the first and last term are both f (x?),
means that

f (x?) = min
x∈RN
L(x,λ?,ν?) = L(x?,λ?,ν?).

In words, a solution to the primal problem x? is also a minimizer of
L(x,λ?,ν?).
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Strong duality and Slater’s condition

As we have just seen, when we have strong duality there is a very close
connection between the solutions of the primal and dual problems. So
when can we expect strong duality to hold? For nonconvex problems,
we rarely have strong duality, but for convex problems we usually
(but not always) do.

Convexity is not quite enough to ensure strong duality, but there
are additional conditions that we can require that will ensure that
strong duality holds. Perhaps the most commonly encountered such
condition is called Slater’s condition. Informally, Slater’s condi-
tion simply says that the feasible set has a non-empty interior. More
formally, Slater’s condition can be expressed as:

Slater’s condition: There exists at least one x̄ such that for
each inequality constraint gm, either gm is affine or

gm(x̄) < 0.

That is, there is an x̄ that is strictly feasible for all non-affine
constraints.

Nearly all of the optimization problems that we will encounter in
this course will satisfy this condition. There are, however, convex
problems that do not. As a simple example, let p1 = [1, 0]T and
p2 = [−1, 0]T and consider the constraints

g1(x) = ‖x− p1‖22 − 1 ≤ 0

g2(x) = ‖x− p2‖22 − 1 ≤ 0.

Note that the only x satisfying both constraints is x = 0 and there
are no strictly feasible points.
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Certificates of (sub)optimality

One potential application of the above facts is to serve as a way of
measuring how far away we are from finding an optimal solution to
our optimization problem. To see this recall that any dual feasible3

(λ,ν) gives us a lower bound on p?, since d(λ,ν) ≤ p?. Thus, if we
have a primal feasible x, then we know that

f (x)− p? ≤ f (x)− d(λ,ν).

We will refer to f (x)−d(λ,ν) as the duality gap for the primal/dual
(feasible) variables x,λ,ν. We know that

p? ∈ [d(λ,ν), f (x)], and likewise d? ∈ [d(λ,ν), f (x)].

If we are ever able to reduce this gap to zero, then we know that x
is primal optimal, and λ,ν are dual optimal.

There are certain kinds of “primal-dual” algorithms that produce a
series of (feasible) points xk,λk,νk at every iteration. We can then
use

f (xk)− d(λk,νk) ≤ ε,

as a stopping criteria, and know that our answer would yield an
objective value no further than ε from optimal.

3We simply need λ ≥ 0 for (λ,ν) to be dual feasible.
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Examples

1. Inequality LP. Calculate the dual of

minimize
x∈RN

〈x, c〉 subject to Ax ≤ b.

Answer: The Lagrangian is

L(x,λ) = 〈x, c〉 +
M∑

m=1

λm (〈x,am〉 − bm)

= cTx− λTb + λTAx.

This is a linear functional in x — it is unbounded below unless

c +ATλ = 0.

Thus

d(λ) = inf
x

(
cTx− λTb + λTAx

)
=

{
−〈λ, b〉, c +ATλ = 0

−∞, otherwise.

So the Lagrange dual program is

maximize
λ∈RM

−〈λ, b〉 subject to ATλ = −c

λ ≥ 0.
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2. Least-squares. Calculate the dual of

minimize
x∈RN

‖x‖22 subject to Ax = b.

Check that the duality gap is zero.

Answer: The Lagrangian is

L(x,ν) = xTx− νTb + νTAx.

This is quadratic in x and will attain its minimum for

x = −1

2
ATν.

Thus

d(ν) =
1

4
νTAATν − bTν − 1

2
νTAATν

= −1

4
νTAATν − bTν,

and the Lagrange dual problem is

maximize
ν∈RM

−1

4
νTAATν − bTν.

Note that this will be maximized when −1
2
AATν = b, which,

when substituted into the dual problem yields

−1

4
νTAATν +

1

2
νTAATν =

1

4
νTAATν =

∥∥∥∥−1

2
ATν

∥∥∥∥2
2

,

which shows that strong duality holds.
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