
III. Constrained Convex Optimization

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 12:33, March 8, 2021



Optimality conditions for constrained
optimization

When we are solving an unconstrained optimization problem, the
goal is clear: we want to find a point where the gradient vanishes.
All of the algorithms we looked at over the last few lectures were in
service of this condition. Once we add constraints, the optimality
conditions are more complicated, and involve relationships between
the gradient of the functional we are minimizing along with the gradi-
ents of the constraints — these are the so-called Karush-Kuhn-Tucker
(KKT) conditions.

We will build up to the KKT conditions slowly. We will first derive a
general (and very easy to prove) geometric necessary and sufficient
condition for x? to be a minimizer of a constrained optimization
program. We will then show how this simple result immediately
yields the KKT conditions for certain kinds of constraints. In the
next set of notes, we will derive the KKT conditions, show that they
are always sufficient, and discuss conditions under which they are
also necessary.

To keep things simpler, in our initial discussion of constrained opti-
mization, we will restrict our focus to smooth optimization problems.
As before, most of what we have to say can be extended to the non-
smooth case by simply replacing gradients with subgradients, but
we will assume that our objective function (and eventually, our con-
straints) are differentiable for the time being.

We start by considering the general constrained problem

minimize
x∈C

f (x)

where C is a closed, convex set, and f is again a convex function.
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We have the following fundamental result:

Let f be a differentiable convex function, and C be a closed convex
set. Then x? is a minimizer of

minimize
x∈C

f (x)

if and only if x? ∈ C and

〈y − x?,∇f (x?)〉 ≥ 0

for all y ∈ C.

This result is geometrically intuitive; it is saying that every vector
from x? to another point y in C must make an obtuse angle with
−∇f (x?). That is, there cannot be any descent directions from x?

that lead to another point in C. Here is a picture:

C

x
−∇f(x )

(level lines)

f(x)
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To prove this, we first argue that 〈y−x?,∇f (x?)〉 ≥ 0 for all y ∈ C
implies that x? is optimal. Since f is convex, for any y ∈ C

f (y) ≥ f (x?) + 〈y − x?,∇f (x?)〉,

and so

f (y)− f (x?) ≥ 〈y − x?,∇f (x?)〉 ≥ 0,

Since this holds for every y ∈ C, x? is a minimizer.

Now suppose that x? is a minimizer. If there were a y ∈ C such
that 〈y − x?,∇f (x?)〉 < 0, then d = y − x? would be a descent
direction, and there would exist a 0 < t < 1 such that

f (x? + t(y − x?)) < f (x?).

Since C is convex and x?,y ∈ C, we know x? + t(y − x?) ∈ C. But
this contradicts the assertion that x? is a minimizer, and so no such
y can exist.

Examples

The abstract geometrical result in the previous section will eventually
lead us to the Karush-Kuhn-Tucker (KKT) conditions. But we will
build up to this by looking at what it tells us in several important
(and prevalent) cases.

We assume throughout this section that f is convex, differentiable,
and defined on all of RN .
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Linear constraints

Consider a convex optimization problem with linear1 constraints,

minimize
x∈RN

f (x) subject to Ax = b,

where A is M ×N and b ∈ RM . At a solution x?, we have

〈y − x?,∇f (x?)〉 ≥ 0,

for all y such thatAy = b. SinceAx? = b as well, this is equivalent
to

〈h,∇f (x?)〉 ≥ 0, for all h ∈ Null(A).

Since h ∈ Null(A)⇔ −h ∈ Null(A), we must have

〈h,∇f (x?)〉 = 0, for all h ∈ Null(A),

i.e. the gradient is orthogonal to the null space of A. This means
that it is in the row space,

∇f (x?) ∈ Range(AT),

and so there is a ν ∈ RM such that

∇f (x?) +ATν = 0.

1We really should be saying affine constraints, but “linear constraints” is
typical nomenclature for this type of problem.
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Summary:

x? is a solution to

minimize
x∈RN

f (x) subject to Ax = b,

if and only if

1. Ax? = b, and

2. there exists a ν? ∈ RM such that ∇f (x?) +ATν? = 0.

x?

�rf(x?) = AT⌫?

(level lines)

f(x)

x? + Null(A)
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Non-negativity constraints

Now consider the convex program

minimize
x∈RN

f (x) subject to x ≥ 0.

At a solution x?, we will have

〈y − x?,∇f (x?)〉 ≥ 0, for all y ∈ RN
+ . (1)

Since both 0 ∈ RN
+ and 2x? ∈ RN

+ , this means

〈x?,∇f (x?)〉 = 0, (2)

and so
〈y,∇f (x?)〉 ≥ 0, for all y ∈ RN

+ ,

meaning that the gradient has only non-negative values as well,

∇f (x?) ≥ 0. (3)

The conditions (2) and (3) are sufficient as well, as together they
imply (1).

Note that condition (3) is the same as saying there exists a λ? ≥ 0
such that

∇f (x?)− λ? = 0.

We can also see that (2) and (3), along with the fact that x? ∈ RN
+ ,

mean that ∇f (x?) and x? can only be non-zero at different indices:

[∇f (x?)]n > 0⇒ xn = 0,

xn > 0⇒ [∇f (x?)]n = 0.
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Summary:

x? is a solution to

minimize
x∈RN

f (x) subject to x ≥ 0,

if and only if

1. x? ≥ 0,

and there exists a λ? ∈ RN such that

2. λ? ≥ 0, and

3. λnxn = 0 for all n = 1, . . . , N , and

4. ∇f (x?)− λ? = 0.

x ∇f(x ) = λ

RN
+
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A single convex inequality constraint

Now consider the convex program

minimize
x∈RN

f (x) subject to g(x) ≤ 0,

where g is also a differentiable convex function. We will argue that
in this case, the optimality conditions for x?,

g(x?) ≤ 0, and 〈y−x?,∇f (x?)〉 ≥ 0, for all y with g(y) ≤ 0,

are equivalent to one of these two conditions holding,

1. g(x?) < 0 and ∇f (x?) = 0, or

2. g(x?) = 0 and the gradients of g and f are negatively aligned:

∇g(x?) = −λ∇f (x?), for some λ > 0.

Establishing this relies on the following geometric fact:2

Let u,v be vectors in RN . If no d exists such that

〈d,u〉 < 0, and 〈d,v〉 < 0 simultaneously, (4)

then u and v are negatively aligned,

u = −λv, for some λ > 0. (5)

The converse also holds, as if (5) is true, there is no way (4) can
be true.

2This is a special case of the famous Gordan Theorem.
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The argument for this is simple. The sets {x : 〈x,u〉 < 0} and
{x : 〈x,v〉 < 0} are open half spaces, and these half spaces are
disjoint if and only if (5) holds.

u

v

{x : hx, ui = 0}

{x : hx, vi = 0}

Suppose that x?, with g(x?) ≤ 0, is a minimizer. We know that
∇g(x?) and ∇f (x?) must be negatively aligned, as otherwise our
geometric fact dictates that there is a d that is a descent direction
for both g and f , meaning there is a 0 < t < 1 such that

f (x? + td) < f (x?), and

g(x? + td) < g(x?) ≤ 0.

This would mean that there is a feasible point at which f is smaller
than it is at x?, directly contradicting the assertion that x? is a
minimizer. Thus no such d can exist.

Suppose now that there is an x? such that g(x?) = 0 and a λ > 0
so that ∇g(x?) = −λ∇f (x?). Let x be any other feasible point;
g(x) ≤ 0. Then, by the convexity of g,

g(x? + θ(x− x?)) ≤ 0, for all 0 ≤ θ ≤ 1.
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Since the above is true for all θ in this range, we know that x− x?

cannot be an ascent direction for g from x?. Thus

〈x− x?,∇g(x?)〉 ≤ 0.

Since ∇g(x?) = −λ∇f (x?), we now know

〈x− x?,∇f (x?)〉 ≥ 0.

Then by the convexity of f ,

f (x) ≥ f (x?) + 〈x− x?,∇f (x?)〉
≥ f (x?),

and so x? is a minimizer.

We can collect all of this into the following summary:

x? is a solution to

minimize
x∈RN

f (x) subject to g(x) ≤ 0,

if and only if

1. g(x?) ≤ 0,
and there exists a λ? ∈ R such that

2. λ? ≥ 0, and

3. λ? g(x?) = 0, and

4. ∇f (x?) + λ?∇g(x?) = 0.
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x

(level lines)

f(x)

{x : g(x) ≤ 0}

∇f(x )

λ ∇g(x )
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