
Quasi-Newton Methods

A great resource for the material in this section is [NW06, Chapter
6].

Newton’s method is great in that it converges to tremendous accu-
racy in a very surprisingly small number of iterations, especially for
smooth functions. It is not so great in that each iteration is extremely
expensive. To compute the step direction,

dk = (∇2f (xk))
−1∇f (xk),

we have to

1. compute the gradient (an N × 1 vector),

2. compute the Hessian (an N ×N matrix),

3. invert the Hessian and apply the inverse to the gradient.

Typically, computing the gradient is reasonable (maybe O(N 2) or
O(N) computations and storage). Computing and inverting the
Hessian might be harder; in general, these operations take O(N 3)
computations, and this is something we will have to repeat at every
iteration. If N is very large, this can be completely impractical.

At the end of the day, the quadratic model is exactly that – a model.
A natural question to ask is if there are alternative quadratic models
that might be cheaper while retaining the essential efficacy of New-
ton. There are, and they are called quasi-Newton methods.

Instead of calculating (and inverting) the Hessian at every point, we
try to form a simple estimate of the (inverse of the) Hessian. We do
this by collecting information about the curvature of the functional

85

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 13:09, February 22, 2021



from the point we visit (and their gradients) as we iterate – basi-
cally, we are approximating the Hessian (the second derivative) by
measuring how the gradients (the first derivative) change from point
to point. What is great is that these Hessian estimates (and their
inverses) can be quickly updated from one iteration to the next, thus
avoiding the expensive matrix inversion.

The cost of these methods is comparable to gradient descent – along
with the gradient computation, we will have to do a few matrix-
vector multiplies at each iteration, the cost of which is again typi-
cally comparable to calculating ∇f (xk). Theoretically, their conver-
gence properties are better than gradient descent, but not as good as
Newton. In practice, they typically significantly outperform gradient
descent and they are practical for problem sizes where we dare not
even dream about computing the Hessian and inverting it.

Approximating the Hessian

Newton’s method works by forming a quadratic model around the
current iterate xk:

f̃k(x) = f (xk) + 〈x− xk, gk〉 +
1

2
(x− xk)

THk(x− xk).

The particular choices of gk = ∇f (xk) and Hk = ∇2f (xk) are mo-
tivated by Taylor’s theorem. We minimize the surrogate functional
above to compute the step direction

dk = −H−1
k gk,

choosing a step size αk, then moving

xk+1 = xk + αkdk.

86

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 13:09, February 22, 2021



We then repeat with a new quadratic model,

f̃k+1(x) = f (xk+1)+〈x−xk+1, gk+1〉+
1

2
(x−xk+1)

THk+1(x−xk+1).

Quasi-Newton methods operate in this same general framework, and
keep the same linear term gk = ∇f (xk). Rather than using the
Hessian, we ask only that our quadratic model yield gradients that
are consistent with the true gradient at both the current point xk+1

and the previous point xk. That is, we want

∇f̃k+1(xk+1) = ∇f (xk+1) (1)

and
∇f̃k+1(xk) = ∇f (xk). (2)

Note that
∇f̃k+1(x) = gk+1 + Hk+1(x− xk+1).

By setting gk+1 = ∇f (xk+1), (1) will hold automatically no matter
what we choose for Hk+1. Thus, we would like to choose Hk+1 so
that (2) also holds. This will occur provided that

gk+1 + Hk+1(xk − xk+1) = gk,

or more compactly
Hk+1sk = yk, (3)

where

sk := xk+1 − xk

yk := gk+1 − gk.

87

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 13:09, February 22, 2021



There are many choices for Hk+1 that satisfy (3), even if we add
the constraint that it be symmetric and positive definite (which we
need to ensure that Hk+1 is invertible, allowing us to compute dk+1.
In general, quasi-Newton methods choose Hk+1 so that it can be
easily computed from Hk – different update rules lead to different
quasi-Newton methods.

BFGS

Perhaps the most widely used quasi-Newton methods, and what is
viewed to be the most effective, is called the BFGS1 algorithm. BFGS
is similar to many other quasi-Newton methods in that it chooses
Hk+1 to be “close” to the previous Hk in a certain sense that turns
out to have computational advantages. In particular, the BFGS
update can be derived as the solution to the optimization problem

minimize
H

‖H −Hk‖W subject to HT = H , Hsk = yk,

where ‖ · ‖W is a particular weighted Frobenius norm (see [NW06]
for details.)

It turns out that this optimization problem has a closed form solution,
giving the BFGS update rule for constructing Hk+1 from Hk:

Hk+1 = Hk +
yky

T
k

yT
ksk
−Hksk(Hksk)

T

sT
kHksk

. (4)

At each iteration, we update Hk by adding two rank-1 matrices to
Hk. This is a critical since in the end we need to be able to invert
Hk+1 to be able to compute the next update. In general this would

1Named after Broyden, Fletcher, Goldfarb, and Shanno.

88

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 13:09, February 22, 2021



remain a computational challenge, but in this case since we already
know H−1

k (which would have been required at the previous step) and
Hk+1 is a low-rank update to Hk, there will be an efficient solution
to computing H−1

k+1. As we will see below, the cost of computing
Hk+1 will be the same order as a vector-matrix multiply (i.e., O(N 2)
instead of O(N 3)).

However, before we discuss the mechanics of computing H−1
k+1, let us

look a bit closer at the BFGS update in (4) and verify that it makes
sense. It is easy to check that Hk+1sk = yk is always satisfied:

Hk+1sk = Hksk +
yky

T
ksk

yT
ksk

−Hksks
T
kH

T
ksk

sT
kHksk

= Hksk + yk −Hksk
= yk,

where above we exploit the fact that Hk is symmetric.

It is also the case that if Hk is positive definite then Hk+1 will also
be positive definite, provided that f is strictly convex.2 This follows
from the monotonic gradient property of convex functions:

〈x− y,∇f (x)−∇f (y)〉 > 0.

Setting x = xk+1 and y = xk, this tells us that yT
ksk > 0. (This is

reassuring, since if yT
ksk = 0 then this update rule would be some-

what problematic.)

2Newton and quasi-Newton algorithms are typically motivated in the con-
text of twice differentiable functions so that the Hessian matrix always
exists. Strict convexity ensures that the Hessian is always invertible,
which we clearly need. If f is not strictly convex, we can actually still
use the BFGS algorithm, but we need to be a bit more careful to ensure
that yT

k sk > 0 and the Hessian remains invertible. We will see later that
this can instead be guaranteed as a part of the line search that selects the
step size αk.

89

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 13:09, February 22, 2021



Moreover, the fact that yT
ksk > 0 ensures that yky

T
k /y

T
ksk is positive

semidefinite. We show below that

Hk −
Hksk(Hksk)

T

sT
kHksk

(5)

is positive semidefinite. Thus Hk+1 is the sum of two positive
semidefinite matrices, and hence positive semidefinite as well. In
fact, we will be able to show that Hk+1 is strictly positive definite
by looking closely at the vectors that live in the nullspace of (5).

To see that (5) is positive semidefinite, recall that a symmetric matrix
M is positive semidefinite if xTMx ≥ 0 for all x 6= 0. Thus, we
would like to show that

xTHkx ≥
xTHksks

T
kHkx

sT
kHksk

.

Notice that the numerator in the fraction above can be written as
(xTHksk)

2. A fact that you can easily verify on your own is that for
any symmetric positive definite matrix M , xTMy defines a valid
inner product. Applying the Cauchy-Schwarz inequality with this
inner product yields

(xTHksk)
2 ≤ (xTHkx)(sT

kHksk)

and thus (5) is positive semidefinite, as desired.

From the above we have that Hk+1 must be positive semidefinite. We
can say more by looking at the eigenvalues of (5) that are zero. From
the argument above it is clear that we actually have a strict inequality
unless x is proportional to sk (since Cauchy-Schwarz is strict unless
the vectors are colinear). Said differently, the eigenvalues of (5) are all

90

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 13:09, February 22, 2021



strictly positive except for one, which corresponds to the eigenvector
sk. Thus, the only way that Hk+1 could have an eigenvector of zero
would be if sk also lived in the nullspace of yky

T
k /y

T
ksk, but this is

explicitly ruled out by the fact that yT
ksk > 0. Thus, Hk+1 must

actually be positive definite.

Now, we return to the issue of calculating H−1
k+1. Noting that Hk+1

can be expressed as the sum of Hk plus two additional terms, we
can apply the Woodbury matrix identity

(A + UCV )−1 = A−1 −A−1U (C−1 + V A−1U )−1V A−1

to “simplify” this inverse. After some tedious calculations we arrive
at the formula:

H−1
k+1 = H−1

k +
(sT

kyk + yT
kH

−1
k yk)(sks

T
k )

(sT
kyk)

2
−H−1

k yks
T
k + sky

T
kH

−1
k

sT
kyk

.

Note that the formula above requires computing a matrix-vector
product (H−1

k yk) and computing two rank-1 matrices (scaled ver-
sions of sks

T
k and sky

T
k ), but all of these computations are O(N 2) as

opposed to O(N 3).

Above, we have spoken only about updates to the quadratic model.
The BFGS algorithm requires not only an initial guess x0, but also
an initial matrix H0. The most common choice here is take H0 = I.

91

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 13:09, February 22, 2021



This gives us the following algorithm:

BFGS

Input: x0, H
−1
0

Initialize: k = 0, g0 = ∇f (x0)

while not converged do

dk = −H−1
k gk

Select αk using a line search

xk+1 = xk + αkdk

gk+1 = ∇f (xk+1)

s = xk+1 − xk, y = gk+1 − gk, a = H−1
k y, γ = sTy

H−1
k+1 = H−1

k + γ+yTa
γ2

ssT − 1
γ
asT − 1

γ
saT

k = k + 1
end while

Convergence of BFGS

There are two main convergence results for BFGS with a step size
chosen using an appropriate line search.

Global convergence: If f is strongly convex, then BFGS with
backtracking converges to x? from any starting point x0 and initial
quadratic model H0 � 0.

92

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 13:09, February 22, 2021



Superlinear local convergence: If f is strongly convex and the
gradient of f is M -smooth (i.e., the Hessian is Lipshitz), then when
we are close to the solution

‖xk+1 − x?‖2 ≤ ck‖xk − x?‖2

where ck → 0.

This is not quite the quadratic convergence of the Newton method,
but it can still be much, much faster than the linear rate given by
gradient descent. In practice, there is often times very little difference
between the convergence of BFGS and Newtons method.

Line search for BFGS

We can use similar line search methods for BFGS as we have seen
before in the context of gradient descent and Newton’s method, with
two important caveats.

First, in initializing a backtracking search it is important to set the
initial step size ᾱ = 1. This ensures that when we get close to a
solution we will be taking sufficiently large steps to ensure superlinear
convergence.

Second, recall the Wolfe conditions:

f (xk)− f (xk + αdk) ≥ c1α 〈dk,∇f (xk)〉 (6)

〈dk,∇f (xk + αkdk)〉 ≥ c2〈dk,∇f (xk)〉, (7)

where 0 < c1 < c2 < 1. In the context of gradient descent, we often
ignore (7) and focus only on (6) (Armijo). However, in the context

93

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 13:09, February 22, 2021



of BFGS (7) also has an important role to play (especially if the
objective function being minimized is not strictly convex).

Specifically, (7) guarantees that yT
ksk > 0 at iteration k, which as

discussed above ensures that the BFGS update for Hk+1 is well-
defined and guarantees that Hk+1 remains positive definite. To see
this, note that for αk satisfying (7) we have

〈dk, gk+1〉 ≥ c2〈dk, gk〉,

which implies that

〈dk, gk+1 − gk〉 ≥ (c2 − 1)〈dk, gk〉.

Note c2 < 1, so that (c2 − 1) < 0. Moreover, since dk is a descent
direction, we have that 〈dk, gk〉 < 0, and thus the right-hand side
above is strictly positive. Thus

〈dk, gk+1 − gk〉 = 〈dk,yk〉 > 0.

Since sk = αkdk, this also shows that yT
ksk > 0, as desired.

References

[NW06] J. Nocedal and S. Wright. Numerical Optimization.
Springer, 2nd edition, 2006.

94

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 13:09, February 22, 2021


