
Newton’s Method

Newton’s method is a classical technique for finding the root of a
general differentiable function f (x) : R → R. That is, we want to
find an x ∈ R such that

f (x) = 0.

As you probably learned in high school, one technique for doing this
is to start at some guess x0, and then follow the iteration

xk+1 = xk −
f (xk)

f ′(xk)
.

This update results from taking a simple linear approximation at
each step:

xk+1

f (xk) f ′(xk)

f (x)

x
xk

Of course, there can be many roots, and which one we converge to
will depend on what we choose for x0. It is also very much possible
that the iterations do not converge for certain (or even almost all)
initial values x0.
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However there is a classical convergence theory that says that once
we are close enough to a particular root x0, we will have

|x0 − xk+1|︸ ︷︷ ︸
εk+1

≤ C · (x0 − xk)2︸ ︷︷ ︸
ε2k

,

where the constant C depends on the ratio between the first and
second derivatives in the interval1 around the root x0:

C = sup
x∈I

|f ′′(x)|
2|f ′(x)|.

The take-away here is that close to the solution, Newton’s methods
exhibits quadratic convergence: the error at the next iteration is
proportional to the square of the error at the last iteration. Since we
are concerned with εk small, εk � 1, this means that under the right
conditions, the error goes down in dramatic fashion from iteration to
iteration.

Notice that applying the technique requires that f is differentiable,
but the convergence guarantee depends on f be twice (continuously)
differentiable.

When f (x) is convex, twice differentiable, and has a minimizer, we
can find a minimizer by applying Newton’s method to the derivative.
We start at some initial guess x0, and then take

xk+1 = xk −
f ′(xk)

f ′′(xk)
. (1)

1There are various technical conditions that f must obey on I for this
result to hold, including the second derivative being continuous and the
first derivative not being equal to zero. Also, the condition “close enough”
is characterized by looking at ratios of derivatives at the root and on I.
The Wikipedia article on this is not bad: https://en.wikipedia.org/
wiki/Newton’s_method.
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Again, if f is three-times continuously differentiable, we converge to
the global minimizer quadratically with a constant that depends on

C = sup
x∈I

1

2

|f ′′′(x)|
|f ′′(x)| ,

for an appropriate interval I around the solution. Again, apply-
ing the method relies on us being able to compute first and second
derivatives of f , and the analysis relies on f being three-times differ-
entiable.

We can interpret the iteration (1) above in the following way:

1. At xk, approximate f (x) using the Taylor expansion

f (x) ≈ f (xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)2.

2. Find the exact minimizer of this quadratic approximation. Tak-
ing the derivative of the expansion above and setting it equal
to zero yields the following optimality condition for x̂ to be a
minimizer:

(x̂− xk)f ′′(xk) = −f ′(xk).
This is just a re-arrangement of the iteration (1).

3. Take xk+1 = x̂.

This last interpretation extends naturally to the case where f (x) is a
function of many variables, f : RN → R. We know that if f is convex
and twice differentiable, we have a minimizer x? when ∇f (x?) = 0.
Newton’s method to find such a minimizer proceeds as above. We
start with an initial guess x0, and use the following iteration:
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1. Take a Taylor approximation around f (xk):

f (x) ≈ f (xk) + 〈x− xk, g〉 +
1

2
(x− xk)

TH(x− xk)

where

g = ∇f (xk) = N × 1 gradient vector at xk

H = ∇2f (xk) = N ×N Hessian matrix at xk.

2. Find the exact minimizer x̂ to this approximation. This gives
us the problem

minimize
x∈RN

gT(x− xk) +
1

2
(x− xk)

TH(x− xk).

Since H ∈ SN+ (since we are assuming f is convex), we know
that the conditions for x̂ being a minimizer2 are

H(x− xk) = −g.
If H is invertible (i.e., H ∈ SN++), then we have a unique
minimizer and

x̂ = xk −H−1g.

3. Take xk+1 = x̂.

This procedure is often referred to as a pure Newton step, as it does
not involve the selection of a step size. In practice, however, it is
often beneficial to choose the step direction as

dk = − (∇2f (xk)
)−1∇f (xk),

and then choose a step size αk using a backtracking line search, and
then take

xk+1 = xk + αkdk

as before.
2Take the gradient of this new expression and set it equal to 0.
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Convergence of Newton’s Method

Suppose that f (x) is strongly convex,

mI � ∇2f (x) �MI, ∀x ∈ RN ,

and that its Hessian is Lipschitz,

‖∇2f (x)−∇2f (y)‖ ≤ L‖x− y‖2.
(The norm on the left-hand side above is the standard operator
norm.) We will show that the Newton algorithm coupled with an
exact line search3 provides a solution with precision ε:

f (xk)− p? ≤ ε,

provided that the number of iterations satisfies

k ≥ C1 (f (x0)− p?) + log2 log2(ε0/ε),

where we can take the constants above to be C1 = 2M 2L2/m5 and
ε0 = 2m3/L2. Qualitatively, this says that Newton’s method takes a
constant number of iterations to converge to any reasonable precision
— we can bound log2 log2(ε0/ε) ≤ 6 (say) for ridiculously small values
of ε.

To establish this result, we break the analysis into two stages. In
the first, the damped Newton stage, we are far from the solution (as
measured by ‖∇f (xk)‖2), but we make constant progress towards
the answer. Specifically, we will show that in this stage,

f (xk)− f (xk+1) ≥ 1/C1.

3These results are easily extended to backtracking line searches; we are just
using an exact line search to make the exposition easier. See [BV04, Sec.
9.5.3] for the analysis with backtracking.
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This implies that when we are far from the solution, we reduce the
gap f (xk)− p? by at least 1/C1 at each iteration. It should be clear,
then, that the number of damped Newton steps is no greater than
C1 (f (x0)− p?).

We will then show that when ‖∇f (xk)‖2 is small enough, the gap
closes dramatically at every iteration. We call this the quadratic
convergence stage, as we will be able to show that once the algorithm
enters this stage at iteration `, for all k > `,

‖∇f (xk)‖2 ≤ C2 · 2−2
k−`

,

where C2 = L/(2m2) is another constant.

Damped phase

We are in this stage when

‖∇f (xk)‖2 ≥ m2/L.

We take xk+1 = xk + αexactdk+1, where

dk+1 = −∇2f (xk)
−1∇f (xk),

and αexact is the result of an exact line search4:

αexact = arg min
0≤α≤1

f (xk + αdk+1).

We define the current Newton decrement as

λk =
√
∇f (xk)T(∇2f (xk))−1∇f (xk),

4For convenience, we are not letting α be larger than 1, just as in a back-
tracking method.
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and note that λ2
k = −∇f (xk)

Tdk+1. Moreover, strong convexity
implies that the eigenvalues of (∇2f (xk))

−1 are at least 1/M and at
most 1/m, yielding the bounds

‖dk+1‖22 ≤
1

m
λ2
k and

1

M
‖∇f (xk)‖22 ≤ λ2

k,

which we will use below. From the definition of strong convexity, we
know that for any t we have

f (xk + tdk+1) ≤ f (xk) + 〈tdk+1,∇f (xk〉 +
M

2
‖tdk+1‖22

= f (xk)− tλ2
k +

Mt2

2
‖dk+1‖22

≤ f (xk)− tλ2
k +

Mt2

2m
λ2
k.

Plugging in t = m/M above yields

f (xk + αexactdk+1)− f (xk) ≤ f

(
xk +

m

M
dk+1

)
− f (xk)

≤ − m

2M
λ2
k

≤ − m

2M 2
‖∇f (xk)‖22

≤ − m5

2L2M 2
.
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Quadratic convergence

When
‖∇f (xk)‖2 < m2/L,

we start to settle things very quickly. We will assume that in this
stage, we choose the step size to be αk = 1. In fact, you can show
that under very mild assumptions on the backtracking parameter
(c < 1/3, to be specific), backtracking will indeed not backtrack at
all and return αk = 1 (see [BV04, p. 490]).

We start by pointing out that by construction,

∇2f (xk)dk+1 = −∇f (xk),

and so by the fundamental theorem of calculus,

∇f (xk+1) = ∇f (xk + dk+1)−∇f (xk)−∇2f (xk)dk+1

=

∫ 1

0

∇2f (xk + tdk+1)dk+1 dt−∇2f (xk)dk+1

=

∫ 1

0

[∇2f (xk + tdk+1)−∇2f (xk)
]
dk+1 dt.

Thus, we obtain

‖∇f (xk+1)‖2 ≤
∫ 1

0

‖∇2f (xk + tdk+1)−∇2f (xk)‖ · ‖dk+1‖2 dt

≤
∫ 1

0

tL‖dk+1‖22 dt

=
L

2
‖[∇2f (xk)]

−1∇f (xk)‖22

≤ L

2m2
‖∇f (xk)‖22,
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where the second inequality follows from the Lipschitz assumption
on the Hessian and the last inequality follows from the fact that the
maximum eigenvalue of (∇2f (xk))

−2 is 1/m2. Thus we have

L

2m2
‖∇f (xk+1)‖2 ≤

(
L

2m2
‖∇f (xk)‖2

)2

≤
(

1

2

)2

,

where the last inequality follows since ‖∇f (xk)‖2 ≤ m2/L. That
is, at every iteration, we are squaring the error (which is less than
1/2). If we entered this stage at iteration `, this means

L

2m2
‖∇f (xk)‖2 ≤

(
L

2m2
‖∇f (x(`))‖2

)2k−`

≤
(

1

2

)2k−`

.

Then using the strong convexity of f ,

f (xk)− p? ≤
1

2m
‖∇f (xk)‖22 ≤

2m3

L2

(
1

2

)2k−`+1

.

The right hand side above is less than ε when

k − ` + 1 ≥ log2 log2(ε0/ε), ε0 = 2m3/L2,

so we spend no more than log2 log2(ε0/ε) iterations in this phase.

Note that

ε = 10−20ε0 ⇒ log2 log2(ε0/ε) = 6.0539.
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Convergence criteria: the Newton decrement

We know that at the minimia of a smooth convex functional we will
have ∇f (x) = 0. So a natural test for convergence is to measure
how far away ∇f (x) is from 0; that is, we say we are converged
when the norm of ∇f (x) is below some threshold (call it ε):

stop when ‖∇f (xk)‖ ≤ ε.

Which norm should we use?

The natural instinct here is to go with the standard Euclidean (`2)
norm, stopping when

‖∇f (xk)‖2 ≤ ε,

and in fact, this quantity played a key role in our analysis above.
But there is something that is unsatisfying about using the Euclidean
norm, and this problem also extends to the way we approached the
analysis in the previous section. An interesting feature of Newton’s
method is that it is affine invariant; if we simply change the co-
ordinates, the iterates change accordingly. For example, let T be
a N × N invertible matrix, and set f̃ (x) = f (Tx). Suppose we
run Newton’s method to try to find a minima of f starting at x0

and computing iterates x1,x2, . . .. Then we run Newton’s method
on f̃ starting at T −1x0 and compute iterates x̃1, x̃2, . . .. This sec-
ond set of iterates will follow the same progression as the first under
transformation by T :

x̃k = T −1xk, k = 1, 2, . . .

The problem, then, with the the Euclidean norm of the gradient is
that it is not affinely invariant:

‖∇f̃ (x)‖2 6= ‖∇f (Tx)‖2 for general T .
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(Apply the chain rule.)

A criteria that is affinely invariant is the Newton decrement:

λ(x) =
√
gTH−1g, g = ∇f (x), H = ∇2f (x).

(Again, you can work this out with a little effort by applying the
chain rule.) These are various ways you can interpret this: one is as
size of the gradient in the norm induced by H−1:

λ(x) = ‖∇f (x)‖H−1.

Of course, the norm itself depends on the point x. You can also
think of it as the directional derivative in the direction we are taking
a Newton step; if d = −(∇2f (x))−1∇f (x), then

〈d,∇f (x)〉 = −λ(x)2.

At any rate, the convergence criteria for Newton’s method is usually
whether λ(xk) is below some threshold.
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Self-concordant functions

There is an alternative analysis of Newton’s method that is more
satisfying in that it gives an affinely invariant bound, and it does not
depend on the constants m,M,L that are usually unknown. The
analysis holds for functions that are self-concordant, a term that we
define below.

Definition. We say that a convex function of one variable f : R→
R is self-concordant if

|f ′′′(x)| ≤ 2f ′′(x)3/2, for all x ∈ dom f.

We say that a convex function of multiple variables f : RN → R is
self-concordant if

g(t) = f (x + tv) is self-concordant for all x ∈ dom f, v ∈ RN .

We should note that the constant 2 that appears in front of the f ′′(x)
above is somewhat arbitrary — if there is any uniform bound on the
ratio of |f ′′′(x)| to f ′′(x)3/2, then f can be made self-concordant
simply by re-scaling.

We mention a few important examples (see [BV04, Chapter 9.6] for
many more).

• Since the third derivative of all linear and quadratic functionals
is zero, they are self-concordant.

• f (x) = − log(x) is self-concordant

• f (X) = − log detX for X ∈ SN++ is self-concordant

• Self-concordance is preserved under composition with an affine
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transformation, so for example

f (x) = −
M∑
m=1

log(bm−aT
mx) on {x : aT

m ≤ bm, m = 1, . . . ,M}

is self-concordant. Functions of the above form will play a ma-
jor role when we talk about log-barrier methods for contrained
optimization.

Using a line of argumentation not too different than in the classical
analysis in the last section, we have the following result for the con-
vergence of Newton’s method (again, see [BV04, Chapter 9] for the
details):

If f (x) : RN → R is self-concordant, then Newton iterations starting
from x0 coupled with standard backtracking line search will have

f (xk)− p? ≤ ε

when
k ≥ Cε0 + log2 log2(1/ε), ε0 = f (x0)− p?.

The constant C above depends only on the backtracking parameters.

You may more fully appreciate this result when we talk about log
barrier techniques a little later.
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