
Algorithms for unconstrained minimization

One of the benefits of minimizing convex functions is that we can
often use very simple algorithms to find solutions. Specifically, we
want to solve

minimize
x∈RN

f (x),

where f is convex. For now we will assume that f is also differen-
tiable.1 We have just seen that, in this case, a necessary and sufficient
condition for x? to be a minimizer is that the gradient vanishes:

∇f (x?) = 0.

Thus, we can equivalently think of the problem of minimizing f (x)
as finding an x? that ∇f (x?) = 0. As noted before, it is not a given
that such an x? exists, but for now we will assume that f does have
(at least one) minimizer.

Every general-purpose optimization algorithm we will look at in this
course is iterative — they will all have the basic form:

Iterative descent

Initialize: k = 0, x0 = initial guess
while not converged do

calculate a direction to move dk
calculate a step size αk ≥ 0
xk+1 = xk + αk dk
k = k + 1

end while

1We will also be interested in cases where f is not differentiable. We will
revisit this later in the course.

33

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 21:16, February 23, 2021



The central challenge in designing a good algorithm mostly boils
down to computing the direction dk. As a preview, here are some
choices that we will discuss:

1. Gradient descent: We take

dk = −∇f (xk) .

This is the direction of “steepest descent” (where “steepest”
is defined relative to the Euclidean norm). Gradient descent
iterations are cheap, but many iterations may be required for
convergence.

2. Accelerated gradient descent: We can sometimes reduce
the number of iterations required by gradient descent by incor-
porating a momentum term. Specifically, we first compute

pk = xk − xk−1

and then take

dk = −∇f (xk) +
βk
αk

pk

or

dk = −∇f (xk + βkpk) +
βk
αk

pk.

The “heavy ball” method and conjugate gradient descent use
the former update rule; Nesterov’s method uses the latter. We
will see later that by incorporating this momentum term, we
can sometimes dramatically reduce the number of iterations
required for convergence.

3. Newton’s method: Gradient descent methods are based on
building linear approximations to the function at each iteration.
We can also build a quadratic model around xk then compute

34

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 21:16, February 23, 2021



the exact minimizer of this quadratic by solving a system of
equations. This corresponds to taking

dk = −
(
∇2f (xk)

)−1∇f (xk) ,

that is, the inverse of the Hessian evaluated at xk applied to
the gradient evaluated at the same point. Newton iterations
tend to be expensive (as they require a system solve), but they
typically converge in far fewer iterations than gradient descent.

4. Quasi-Newton methods: If the dimension N of x is large,
Newton’s method is not computationally feasible. In this case
we can replace the Newton iteration with

dk = −Qk∇f (xk)

where Qk is an approximation or estimate of (∇2f (xk))
−1

.
Quasi-Newton methods may require more iterations than a
pure Newton approach, but can still be very effective.

Whichever direction we choose, it should be a descent direction,
i.e., dk should satisfy

〈dk,∇f (xk)〉 ≤ 0.

Since f is convex, it is always true that

f (x + αd) ≥ f (x) + α 〈d,∇f (x)〉 ,

and so to decrease the value of the functional while moving in direc-
tion d, it is necessary that the inner product above be negative.

35

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 21:16, February 23, 2021



Example: Swarm robotics

Suppose that we have N robots with positions p(1),p(2), . . . ,p(N),
where each p(n) is a vector in RD, with D = 2 or 3, depending on the
application. Suppose that we want these robots to meet at the same
location. We do not care where this is, we simply want the robots to
all converge to the same point. We can pose this as the solution to
a convex optimization problem. Specifically, set

x =


p(1)

p(2)

...
p(N)

 ,
so that x ∈ RND. Next, for each robot we define a neighborhood
or a set of indices Nn corresponding to the robots to which robot n
can measure its distance. In other words, if m ∈ Nn, robot n can
compute ‖p(n) − p(m)‖2. We will assume for the sake of simplicity
that these are symmetric in the sense that m ∈ Nn if and only if
n ∈ Nm. We would like all of these distances to be zero, so a natural
objective function that we might want to minimize is

f (x) =
N∑
n=1

∑
m∈Nn

‖p(n) − p(m)‖22.

We can compute the gradient of this function by noting that

∇p(n)f (x) =
∑
m∈Nn

2(p(n) − p(m)) +
∑

m :n∈Nm

2(p(n) − p(m)).

If we make the simplifying assumption that the neighborhoods are
symmetric, so thatm ∈ Nn if and only if n ∈ Nm, then this simplifies

36

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 21:16, February 23, 2021



to
∇p(n)f (x) = 4

∑
m∈Nn

(p(n) − p(m)).

Putting this all together, we can write

∇f (x) = 4


∑

m∈N1
(p(1) − p(m))∑

m∈N2
(p(2) − p(m))

...∑
m∈NN

(p(N) − p(m))

 .

In this case the update rule xk+1 = xk−αk∇f (xk) nicely de-couples
so that the nth robot has the update rule (ignoring the multiplicative
factor of 4):

p
(n)
k+1 = p

(n)
k − αk

∑
m∈Nn

(p
(n)
k − p

(m)
k ).

This update rule plays a fundamental role in many swarm robotics
problems and is known as the consensus equation. Note that
the update for each robot depends only on local information (the
difference between its own position and that of its neighbors), and
hence each robot can compute its own update without any form of
global coordination.

For a sufficiently small step size (as we will see next time), this algo-
rithm is guaranteed to converge. Moreover, provided that the neigh-
borhoods are fully connected (so that there is at least some indirect
path between any pair of robots) then the global optimum of this
problem will be for all robots to converge to the same point.

37

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 21:16, February 23, 2021



Line search methods

Given a starting point xk and a direction dk, we still need to decide
on αk, i.e., how far to move. With xk and dk fixed, we can think of
the remaining problem as a one-dimensional optimization problem
where we would like to choose α to minimize (or at least reduce)

φ(α) = f (xk + αdk) .

Note that we don’t necessarily need to find the true minimum – we
aren’t even sure that we are moving in the right direction at this
point – but we would generally still like to make as much progress
as possible before calculating a new direction dk+1. There are many
methods for doing this, here are three:

Fixed step size

We can just use a constant step size αk = α. This will work if
the step size is small enough, but usually this results in using more
iterations than necessary. This is actually a very commonly used
approach since if your problem is small enough, this may not matter.

Exact line search

Another approach is to solve the one-dimensional optimization pro-
gram

minimize
α≥0

φ(α).

There are a variety of strategies you could take here (e.g., apply-
ing a bisection search or some similar one-dimensional optimization
strategy) to try to solve this problem. This is typically not worth

38

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 21:16, February 23, 2021



the trouble. However, there are certain instances (e.g., least squares
and other unconstrained convex quadratic programs) when it can be
solved analytically, in which case it is generally a good idea.

Example: Minimizing a quadratic function Suppose we
wish to solve the optimization problem

minimize
x

1

2
xTQx− xTb.

For example, this optimization problem arises in the context of solv-
ing least squares problems. Suppose that we have selected a step
direction dk. In this case

φ(α) =
1

2
(xk + αdk)

TQ(xk + αdk)− (xk + αdk)
Tb.

This is a quadratic function of α, and thus we can compute the
optimal step size by finding the α such that φ′(α) = 0. By expanding
out the quadratic term, it is easy to show that

φ′(α) = αdT
kQdk + dT

kQxk − dT
k b.

Setting this equal to zero and solving for α yields the step size

αk =
dT
k (b−Qxk)

dT
kQdk

.

Backtracking

Exact line search is generally not worth the trouble, but the problem
with a fixed step size is that we cannot guarantee convergence of α is
too large, but when α is too small we may not make much progress on

39

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 21:16, February 23, 2021



each iteration. A popular strategy is to do a rudimentary search for
an α that gives us sufficient progress as measured by the inequality

f (xk)− f (xk + αdk) ≥ −c1α 〈dk,∇f (xk)〉 ,

where c1 ∈ (0, 1). This is known as the Armijo condition. For α
satisfying the inequality we have that the reduction in f is propor-
tional to both the step length α and the directional derivative in the
direction dk.

Note that we can equivalently write this condition as

φ(α) ≤ h(α) := φ(0) + c1αφ
′(0).

Recall that from convexity, we also have that

φ(α) ≥ g(α) := φ(0) + αφ′(0).

Since c1 < 1, we always have φ(α) ≤ h(α) for sufficiently small α.
An example is illustrated below:

α

g(α)

h(α)

φ(α)

allowable α

40

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 21:16, February 23, 2021



We still haven’t said anything about how to actually use the Armijo
condition to pick α. Within the set of allowable α satisfying the
condition, the (guaranteed) reduction in f is proportional to α, so
we would generally like to select α to be large.

This inspires the following very simple backtracking algorithm:
start with a step size of α = ᾱ, and then decrease by a factor of ρ
until the Armijo condition is satisfied.

Backtracking line search

Input: xk, dk, ᾱ > 0, c1 ∈ (0, 1), and ρ ∈ (0, 1).

Initialize: α = ᾱ

while φ(α) > φ(0) + c1αφ
′(0) do

α = ρα

end while

The backtracking line search tends to be cheap, and works very well
in practice. A common choice for ᾱ is ᾱ = 1, but this can vary
somewhat depending on the algorithm. The choice of c1 can range
from extremely small (10−4, encouraging larger steps) to relatively
large (0.3, encouraging smaller steps), and typical values of ρ range
from 0.1, (corresponding to a relatively coarse search) to 0.8 (corre-
sponding to a finer search).

Wolfe conditions

The Armijo condition above guarantees that the selected step size
provides some progress in terms of reducing f . A potential drawback,

41

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 21:16, February 23, 2021



as can be seen in the figure, is that the Armijo condition does not rule
out extremely small steps. To address this, it is sometimes helpful
to impose an additional requirement on the step size:

〈dk,∇f (xk + αkdk)〉 ≥ c2〈dk,∇f (xk)〉,

where c2 ∈ (0, 1). This condition is easier to interpret if we again
recall that both sides of this inequality correspond to a directional
derivative (in the direction of dk), and so this condition is equivalent
to

φ′(α) ≥ c2φ
′(0).

In words, this condition tells us to select a step size such that the slope
of φ has increased by a certain factor compared to the initial slope
φ′(0). For convex functions this translates to a minimum allowable
step size, as illustrated below:

α

φ(α)

allowable α

desired
slope

42

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 21:16, February 23, 2021



This condition together with the Armijo condition are collectively
called the Wolfe conditions:

φ(α) ≤ φ(0) + c1αφ
′(0)

φ′(α) ≥ c2φ
′(0),

where 0 < c1 < c2 < 1.

In gradient descent (as well as other methods we will see soon, such
as accelerated gradient descent and Newton’s method), we can often
dispense with the second of these conditions – the standard back-
tracking search already biases us away from making the step size
much smaller than is required by the Armijo condition. However,
in some cases (such as quasi-Newton methods) it will be important
to explicitly enforce the second condition. Fortunately, the standard
backtracking search can be easily modified to handle this by simply
introducing an additional step at each iteration to check if the condi-
tion fails, in which case we must increase α to some value between
the last two iterates.

43

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 21:16, February 23, 2021


