
Differentiable functions

As we will see below, there are alternative (but equally natural)
ways to think about a convex function f when it is differentiable.
Before delving into this, we’re first going to do a brief review of the
key notions from multivariable calculus that lie at the heart of how
we think about many convex optimization problems.

The gradient and the Hessian

First, recall that a function f : R→ R is differentiable if its deriva-
tive, defined as

f ′(x) = lim
δ→0

f (x + δ)− f (x)

δ
,

exists for all x ∈ dom f . To extend this notion to functions of
multiple variables, we must first extend our notion of a derivative.
For a function f : RN → R that is defined on N -dimensional vectors,
recall that the partial derivative with respect to xn is

∂f (x)

∂xn
= lim

δ→0

f (x + δen)− f (x)

δ
,

where en is the nth “standard basis element”, i.e., the vector of all
zeros with a single 1 in the nth entry.

The gradient of a function f : RN → R is the vector of partial
derivatives given by:

∇f (x) =


∂f(x)

∂x1
∂f(x)

∂x2...
∂f(x)

∂xN

 .
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Similar to the scalar case, we say that f is differentiable if the gradient
exists for each x ∈ dom f .

We will use the term gradient in two subtly different ways. Some-
times we use∇f (x) to describe a vector-valued function or a vector
field, i.e., a function that takes an arbitrary x ∈ RN and produces
another vector. However, we also use the term gradient, and the
same notation ∇f (x), to refer to vector given by the gradient at a
particular point x. So sometimes when we say “gradient” we mean a
vector-valued function, and sometimes we mean a single vector, and
in both cases we use the notation ∇f (x). Which one will usually be
obvious by the context.1

Note that in some cases we will use the notation ∇xf (x) to indicate
that we are taking the gradient with respect to x. This can be helpful
when f is a function of more variables than just x, but most of the
time this is not necessary so we will typically use the simpler ∇f (x).

Here we adopt the convention that the gradient is a column vector.
This is the most common choice and is most convenient in this class,
but some texts will instead treat the gradient as a row vector. The
reason for this is to align with the standard convention for the Ja-
cobian.2 Thus, it is always worth double-checking what notation is
being used when consulting outside resources.

1This is just like in the scalar case, where the notation f(x) can sometimes
refer to the function f and sometimes the function evaluated at x.

2The Jacobian of a vector-valued function f : RN → RM is the M × N
matrix of partial derivatives with respect to each dimension in the range.
In this course we will mostly be concerned with functions mapping to a
single dimension, in which case the Jacobian would be the 1×N matrix
∇Tf(x), i.e., the gradient but treated as a row vector. Directly defining
the gradient as a row vector instead of a column vector is thus more
convenient in some contexts.
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Finally, we will also occasionally need to make use of second deriva-
tives. For a function f : RN → R, this is captured by the Hessian,
which is the matrix of all possible pairwise partial derivatives:3

∇2f (x) =


∂2f(x)

∂x21

∂2f(x)

∂x1∂x2
· · · ∂2f(x)

∂x1∂xN
∂2f(x)

∂x2∂x1

∂2f(x)

∂x22
· · · ∂2f(x)

∂x2∂xN
... ... . . . ...

∂2f(x)

∂xN∂x1

∂2f(x)

∂xN∂x2
· · · ∂2f(x)

∂x2N

 .

Interpretation of the gradient

The gradient is one of the most fundamental concepts of this course.
We can interpret the gradient in many ways. One way to think of
the gradient when evaluated at a particular point x is that it defines
a linear mapping from RN to R. Specifically, given a u ∈ RN , we
can use ∇f (x) to define a mapping of u to R by simply taking the
inner product between the two vectors:

〈u,∇f (x)〉.

What does this mapping tell us? It computes the directional
derivative of f in the direction of u, i.e.,

〈u,∇f (x))〉 = lim
δ→0

f (x + δu)− f (x)

δ
. (1)

This tells us how fast f is changing at x when we move in the
direction of u.

3Note that if we view the gradient ∇f(x) as a vector valued function map-
ping from RN to RN , then the Hessian is the same as the Jacobian of the
gradient.
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This fundamental fact is a direct consequence of Taylor’s theorem (see
the Technical Details section below). Specifically, let f : RN → R be
any differentiable function. Then for any u ∈ RN , we can write

f (x + u) = f (x) + 〈u,∇f (x)〉 + h(u)‖u‖2,
where h(u) : RN → R is some function satisfying h(u) → 0 as
u→ 0.

If we substitute δu in place of u above and rearrange, we obtain the
identity

〈u,∇f (x)〉 =
f (x + δu)− f (x)− h(δu)‖δu‖2

δ

=
f (x + δu)− f (x)

δ
− h(δu)‖u‖2.

Note that this holds for any δ > 0. Since h(δu) → 0 as δ → 0, we
can arrive at (1) by simply taking the limit as δ → 0.

A related way to think of ∇f (x) is as a vector that is pointing in the
direction of steepest ascent, i.e., the direction in which f increases
the fastest when starting at x. To justify this, note that we just
observed that we can interpret 〈u,∇f (x)〉 as measuring how quickly
f increases when we move in the direction of u. How can we find
the direction u that maximizes this quantity? You may recall that
the Cauchy-Schwarz inequality tells us that

|〈u,∇f (x)〉| ≤ ‖∇f (x)‖2‖u‖2,
and that this holds with equality when u is co-linear with ∇f (x),
i.e., when u points in the same direction as ∇f (x). Specifically, this
implies that ∇f (x) is the direction of steepest ascent, and −∇f (x)
is the direction of steepest descent.
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More broadly, this characterizes the entire sets of ascent/descent di-
rections. Suppose that f : RN → R is differentiable at x. If u ∈ RN

is a vector obeying 〈u,∇f (x)〉 < 0, then we say that u is a descent
direction from x, and for small enough t > 0,

f (x + tu) < f (x).

Similarly, if 〈u,∇f (x)〉 > 0, then we say that u is an ascent
direction from x, and for small enough t > 0,

f (x + tu) > f (x).

It should hopefully not be a huge stretch of the imagination to
see that being able to compute the direction of steepest ascent (or
steepest descent) will be useful in the context of finding a maxi-
mum/minimum of a function.

Equivalent characterizations of convexity

Now that we can talk intelligently about what it means for a function
to be differentiable, we can look more carefully at functions that
are both convex and differentiable. For such functions, there are
equivalent (possibly simpler) ways to think about convexity.

First order conditions for convexity

If f is differentiable, then it is convex if and only if

f (x) ≥ f (x′) + 〈x− x′,∇f (x′)〉 (2)

for all x,x′ ∈ dom f .

20

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 22:13, January 31, 2021



This says that the linear approximation of f formed from the tangent
line (or plane, or hyperplane, as we move to higher dimensions) will
always remain below f . Specifically, in (2) we are comparing two
functions: f (x) and the tangent

g(x) = f (x′) + 〈x− x′,∇f (x′)〉.

What (2) is saying is that g(x) is a global underestimator of f (x).

f (x)

g(x) = f (x′) + 〈x − x′,∇f (x′)〉

x

x = x′

This is an incredibly useful fact, and if we never had to worry about
functions that were not differentiable, we might actually just take
this as the definition of a convex function.

We now prove this result. It is easy to show that if f is convex and
differentiable, then we must have (2). Specifically, since f is convex,
we have that for any θ ∈ [0, 1],

f (θx + (1− θ)x′) ≤ θf (x) + (1− θ)f (x′).
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Rearranging this, we have

f (x) ≥ f (θx + (1− θ)x′)− (1− θ)f (x′)

θ

= f (x′) +
f (x′ + θ(x− x′))− f (x′)

θ
.

The inequality in (2) follows from this by taking the limit as θ → 0.
To see this, recall (from our review of multivariable calculus) that
the inner product between the gradient of f evaluated at x′ and
another vector u is the directional derivative of f in the direction of
u; setting u = x− x′ this is exactly the same as

〈x− x′,∇f (x′)〉 = lim
θ→0

f (x′ + θ(x− x′))− f (x′)

θ
.

We next need to show that if (2) holds, then f is convex. To do
so, let x 6= y be arbitrary vectors in dom f and fix θ ∈ [0, 1]. Set
z = θx + (1− θ)y. From (2) we have

f (x) ≥ f (z) + 〈x− z,∇f (z)〉

and
f (y) ≥ f (z) + 〈y − z,∇f (z)〉

If we multiply the first inequality by θ, the second by 1−θ, and then
add the two, then since θ(x− z) + (1− θ)(y − z) = 0, we obtain

θf (x) + (1− θ)f (y) ≥ f (z) = f (θx + (1− θ)y),

which is exactly the definition of a convex function.
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Second-order conditions for convexity

Recall that we say that f : RN → R is twice differentiable if the
Hessian matrix ∇2f (x) exists for every x ∈ dom f .

If f is twice differentiable, then it is convex if and only if

∇2f (x) � 0

for all x ∈ dom f .

Note that for a one-dimensional function f : R→ R, the above con-
dition just reduces to f ′′(x) ≥ 0. You can prove the one-dimensional
version relatively easy (although we will not do so here) using the
first-order characterization of convexity described above and the def-
inition of the second derivative. You can then prove the general case
by considering the function g(t) = f (x+ tv). To see how, note that
if f is convex and twice differentiable, then so is g. Using the chain
rule, we have

g′′(t) = vT∇2f (x + tv)v.

Since g is convex, the one-dimensional result above tells us that
g′′(0) ≥ 0, and hence vT∇2f (x)v ≥ 0. Since this has to hold for
any v, this means that ∇2f (x) � 0. The proof that ∇2f (x) � 0
implies convexity follows a similar strategy.

Examples

• Quadratic functionals: The function

f (x) =
1

2
xTPx + qTx + r,
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where P is symmetric, has ∇2f (x) = P , so f (x) is convex if
and only if P � 0.

• Least-squares: The least squares objective function

f (x) = ‖Ax− b‖22,

where A is an arbitrary M×N matrix, has∇2f (x) = 2ATA,
so f (x) is convex for any A.

Strict convexity

It is relatively straightforward to show that for f differentiable, strict
convexity is equivalent to (2) holding with a strict inequality. It is
also easy to show that if ∇2f (x) � 0, then f is strictly convex.

However, it is not the case that f being strictly convex implies
∇2f (x) � 0 for all x. As an example, consider the function f (x) =
x4. This function is strictly convex, but also has f ′′(0) = 0.

Why convexity?

Convex functions satisfy a number of properties that are desirable
in the context of optimization. Here we will first discuss two funda-
mental facts.

Recall the unconstrained optimization problem:

minimize
x∈RN

f (x). (3)

Below we will first show that for any convex f , if x? is a local min-
imizer of (3), then it is also a global minimizer. Second, under the
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conditions that f (x) is convex and differentiable, we will show that
x? is a minimizer of (3) if and only if the derivative is equal to zero:

x? is a global minimizer ⇔ ∇f (x?) = 0.

Something similar is also true for non-differentiable (but still convex)
f . We will explore this later in the course.

Local minima are also global minima

The most important property of convex functions from an optimiza-
tion perspective is that any local minimum is also a global minimum,
or more formally:

Let f (x) be a convex function on RN , and suppose that x? is a
local minimizer of f in that there exists an ε > 0 such that

f (x?) ≤ f (x) for all ‖x− x?‖2 ≤ ε.

Then x? is also a global minimizer: f (x?) ≤ f (x) for all x ∈ RN .

To prove this, suppose that x? is a local minimum. We want to show
that f (x?) ≤ f (x′) for any x′. We already have that f (x?) ≤ f (x′)
if ‖x′ − x?‖2 ≤ ε, so all we need to do is show that this also holds
for x′ with ‖x′ − x?‖2 > ε. Note that from convexity, we have

f (θx′ + (1− θ)x?) ≤ θf (x′) + (1− θ)f (x?)

for any θ ∈ [0, 1]. This has to hold for any θ ∈ [0, 1], and in partic-
ular, it must hold for θ = ε/‖x′ − x?‖2 (which is less than 1 since
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‖x′ − x?‖2 > ε). For this choice of θ we have

‖θx′ + (1− θ)x? − x?‖2 = θ‖x′ − x?‖2 = ε,

thus θx′ + (1 − θ)x? lives in the neighborhood where x? is a local
minimum, and hence

f (x?) ≤ f (θx′ + (1− θ)x?).

Combining this with the inequality above we have

f (x?) ≤ θf (x′) + (1− θ)f (x?).

Rearranging this gives us θf (x?) ≤ θf (x′), or simply f (x?) ≤ f (x′),
which is exactly what we wanted to prove.

Note that for functions f that are not convex, any number of things
are possible. It might be the case that there is only one local mini-
mum and that it corresponds to the global minimum. We are typi-
cally not so lucky, though. There may be many local minima, some
of which may be very far from actually minimizing f .

We close this section by re-emphasizing that the entire discussion
above would stay the same if we replaced minimizex∈RN f (x) with
minimizex∈U f (x) for any open set U ⊂ RN .

Optimality conditions for differentiable functions

We have just shown that if we want to find a global minimum of
a convex function, it is sufficient to find any local minimum. This
raises the question: How do we know when we have found a minimum
of a function (local or global)? Here we provide an answer to this
question in the special case where f is differentiable.
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Let f be convex and differentiable on RN . Then x? solves

minimize
x∈RN

f (x)

if and only if ∇f (x?) = 0.

To prove this, we first assume that x? is a local minimum of f and
show that this implies that ∇f (x?) = 0. This follows almost imme-
diately. If x? is a local minimum of f , then this means that every
direction must be an ascent direction, i.e., 〈d,∇f (x)〉 ≥ 0 for all
d ∈ RN . However, the only way we can make 〈d,∇f (x?)〉 ≥ 0 for
all d is if ∇f (x?) = 0. Thus, for differentiable f

x? is a (local or global) minimizer ⇒ ∇f (x?) = 0.

Note that this fact does not actually require f to be convex.

Now we will show that for convex f we also have that ∇f (x?) = 0
implies that f is a minimizer. Specifically, it is a direct consequence
of our first order characterization of convexity in (2) that

f (x? + u) ≥ f (x?) + 〈u,∇f (x?)〉,

for all choices of u ∈ RN . This now makes it clear that for convex f

∇f (x?) = 0 ⇒ x? is a (global) minimizer.

This fact will lie at the heart of the algorithms for unconstrained
convex optimization that we will begin discussing next time – if we
can find an x that makes the gradient vanish, then we have solved
the problem.
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Existence and uniqueness

We close this discussion on a couple of minor technical notes. First,
it is important to realize that it is not always the case that a convex
function will actually have a minimizer. That is, there may be some-
times be no x? such that f (x?) ≤ f (x) for all x ∈ RN . For example,
f (x) = e−x does not have a minimizer on the real line, even though it
is convex (and differentiable). We will not worry much about this in
this course, but it is worth realizing that one can encounter a convex
optimization problem for which no solution exists.

Moreover, even when a minimizer does exist, that does not always
guarantee that it is unique. That is, there might be multiple distinct
x that achieve the minimum value of f . However, there are certainly
lots of scenarios where there is only one unique minimizer. One
prominent example is when f is strictly convex.

Let f be strictly convex on RN . If f has a global minimizer, then
it is unique.

This is easy to argue by contradiction. Let x? be a global minimizer,
and suppose that there existed an x̂ 6= x? with f (x̂) = f (x?). But
then there would be many x which achieve smaller values, as for all
0 < θ < 1,

f (θx? + (1− θ)x̂) < θf (x?) + (1− θ)f (x̂)

= f (x?).

This would contradict the assertion that x? is a global minimizer,
and hence no such x̂ can exist.
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Technical Details: Taylor’s Theorem

You might recall the mean-value theorem from your first calculus
class. If f : R → R is a differentiable function on the interval
[a, x], then there is a point inside this interval where the derivative
of f matches the line drawn between f (a) and f (x). More precisely,
there exists a z ∈ [a, x] such that

f ′(z) =
f (x)− f (a)

x− a .

Here is a picture:

xza

f(a)
f(x)

f 0(z) =
f(x) � f(a)

x � a

We can re-arrange the expression above to say that there is some z
between a and x such that

f (x) = f (a) + f ′(z)(x− a).

The mean-value theorem extends to derivatives of higher order; in
this case it is known as Taylor’s theorem. For example, suppose
that f is twice differentiable on [a, x], and that the first derivative f ′

is continuous. Then there exists a z between a and x such that

f (x) = f (a) + f ′(a)(x− a) +
f ′′(z)

2
(x− a)2.
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In general, if f is k+1 times differentiable, and the first k derivatives
are continuous, then there is a point z between a and x such that

f (x) = pk,a(x) +
f (k+1)(z)

k!
(x− a)k+1,

where pk,a(x) polynomial formed from the first k terms of the Taylor
series expansion around a:

pk,a(x) = f (a)+f ′(a)(x−a)+
f ′′(a)

2
(x−a)2+ · · ·+ f (k)(a)

k!
(x−a)k.

These results give us a way to quantify the accuracy of the Taylor ap-
proximation around a point. For example, if f is twice differentiable
with f ′ continuous, then

f (x) = f (a) + f ′(a)(x− a) + h1(x)(x− a),

for a function h1(x) goes to zero as x goes to a:

lim
x→a

h1(x) = 0.

In fact, you do not even need two derivatives for this to be true. If
f has a single derivative, then we can find such an h1. When f has
two derivatives, then we have an explicit form for h1:

h1(x) =
f ′′(zx)

2
(x− a),

where zx is the point returned by the (generalization of) the mean
value theorem for a given x.

In general, if f has k derivatives, then there exists an hk(x) with
limx→a hk(x) = 0 such that

f (x) = pk,a(x) + hk(x)(x− a)k.
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All of the results above extend to functions of multiple variables. For
example, if f (x) : RN → R is differentiable, then around any point
a,

f (x) = f (a) + 〈x− a,∇f (a)〉 + h1(x)‖x− a‖2,
where h1(x) → 0 as x approaches a from any direction. If f (x) is
twice differentiable and the first derivative is continuous, then there
exists z on the line between a and x such that

f (x) = f (a) + 〈x− a,∇f (a)〉 +
1

2
(x− a)T∇2f (z)(x− a).

We will use these two particular multidimensional results in this
course, referring to them generically as “Taylor’s theorem”.
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