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Unconstrained optimization

We will start our discussion about solving convex optimization pro-
grams by considering the unconstrained case. Our template problem
is

minimize
x∈RN

f (x), (1)

where f is convex. While we state this problem as a search over all
of RN , almost everything we say here can be applied to minimized a
convex function over an open set.1

Before we go too deep into optimization, however, we need to pro-
vide a bit more mathematical rigor in terms of how we think about
convexity.

Convex sets

In this section, we will be introduced to some of the mathematical
fundamentals of convex sets.

Recall that a set C ⊂ RN is convex if

x,y ∈ C ⇒ (1− θ)x + θy ∈ C for all θ ∈ [0, 1].

In English, this means that if we travel on a straight line between
any two points in C, then we never leave C.
1A formal definition of what it means for a set to be open is provided in the

technical details at the end of these notes. Informally, an open set is one
that doesn’t have a boundary. The standard example of such a set is an
open interval on the real line, e.g., (0, 1). In the context of constrained
optimization where the constraint set has a boundary, we must consider
the fact that the solution can (and probably is) on this boundary, which
complicates the picture considerably.
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These sets in R2 are convex:

These sets are not:

Examples of convex (and nonconvex) sets

• Subspaces. Recall that if S is a subspace of RN , then
x,y ∈ S ⇒ ax + by ∈ S for all a, b ∈ R.
So S is clearly convex.

• Affine sets. Affine sets are just subspaces that have been offset
by the origin:

{x ∈ RN : x = y + v, y ∈ T }, T = subspace,

for some fixed vector v.

• Bound constraints. Rectangular sets of the form

C = {x ∈ RN : `1 ≤ x1 ≤ u1, `2 ≤ x2 ≤ u2, . . . , `N ≤ xN ≤ uN}
for some `1, . . . , `N , u1, . . . , uN ∈ R are convex.
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• The simplex in RN

{x ∈ RN : x1 + x2 + · · · + xN ≤ 1, x1, x2, . . . , xN ≥ 0}
is convex.

• Any subset of RN that can be expressed as a set of linear in-
equality constraints

{x ∈ RN : Ax ≤ b}
is convex. Notice that both rectangular sets and the simplex
fall into this category — for the simplex, take

A =


1 1 1 · · · 1
−1 0 0 · · · 0
0 −1 0 · · · 0
... . . .
0 · · · −1

 , b =


1
0
0
...
0

 .
In general, when sets like these are bounded, the result is a
polyhedron.

• Norm balls. If ‖ · ‖ is a valid norm on RN , then

Br = {x : ‖x‖ ≤ r},
is a convex set.

• Ellipsoids. An ellipsoid is a set of the form

E = {x : (x− x0)
TP −1(x− x0) ≤ r},

for a symmetric positive-definite matrix P . Geometrically, the
ellipsoid is centered at x0, its axes are oriented with the eigen-
vectors of P , and the relative widths along these axes are pro-
portional to the eigenvalues of P .
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• A single point {x} is convex.

• The empty set is convex.

• The set
{x ∈ R2 : x2

1 − 2x1 − x2 + 1 ≤ 0}
is convex. (Sketch it!)

• The set
{x ∈ R2 : x2

1 − 2x1 − x2 + 1 ≥ 0}
is not convex.

• The set
{x ∈ R2 : x2

1 − 2x1 − x2 + 1 = 0}
is certainly not convex.

• Sets defined by linear equality constraints where only some of
the constraints have to hold are in general not convex. For
example

{x ∈ R2 : x1 − x2 ≤ −1 and x1 + x2 ≤ −1}

is convex, while

{x ∈ R2 : x1 − x2 ≤ −1 or x1 + x2 ≤ −1}

is not convex.
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Cones

A cone is a set C such that

x ∈ C ⇒ θx ∈ C for all θ ≥ 0.

Convex cones are sets which are both convex and a cone. C is a
convex cone if

x1,x2 ∈ C ⇒ θ1x1 + θ2x2 ∈ C for all θ1, θ2 ≥ 0.

Given an x1,x2, the set of all linear combinations with positive
weights makes a wedge. For practice, sketch the region below that
consists of all such combinations of x1 and x2:

x2

x1

We will mostly be interested in proper cones, which in addition to
being convex, are closed, have a non-empty interior2 (“solid”), and
do not contain entire lines (“pointed”).

Examples of convex cones

Non-negative orthant. The set of non-negative vectors,

RN
+ = {x ∈ RN : xn ≥ 0, for n = 1, . . . , N},

is a proper cone.

2See Technical Details for precise definition.
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Positive semi-definite cone. The set of N ×N symmetric matri-
ces with non-negative eigenvalues, SN+ , is a proper cone.

Non-negative polynomials. Vectors of coefficients of non-negative
polynomials on [0, 1],

{x ∈ RN : x1+x2t+x3t
2+· · ·+xNtN−1 ≥ 0 for all 0 ≤ t ≤ 1},

form a proper cone. Notice that it is not necessary that all
the xn ≥ 0; for example t − t2 (x1 = 0, x2 = 1, x3 = −1) is
non-negative on [0, 1].

Norm cones. The subset of RN+1 defined by

{(x, t), x ∈ RN , t ∈ R : ‖x‖ ≤ t}
is a proper cone for any valid norm ‖ · ‖ and t > 0. We have
seen this already for the Euclidean norm with N = 2, but this
holds for arbitrary norms and dimensions.

Every proper cone K defines a partial ordering or generalized
inequality. We write

x �K y when y − x ∈ K.
For example, for vectors x,y ∈ RN , we say

x �RN
+
y when xn ≤ yn for all n = 1, . . . , N.

For symmetric matrices X,Y , we say

X �SN+ Y when Y −X has non-negative eigenvalues.

We will typically just use � when the context makes it clear. In fact,
for RN

+ we will just write x ≤ y to denote x �RN
+
y, as we have

already done several times.
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Partial orderings obey share of the properties of the standard ≤ on
the real line. For example:

x � y, u � v ⇒ x + u � y + v.

But other properties do not hold; for example, it is not necessary
that either x � y or y � x. For an extensive list of properties of
partial orderings (most of which will make perfect sense on sight) can
be found in [BV04, Chapter 2.4].

Convex functions

Convex sets are a fundamental concept in optimization. An equally
important (and closely related) notion is that of convex functions.

To define this rigorously, we must sometimes be specific about the
subset of RN where a function can be applied. Specifically, the do-
main dom f of a function f : RN → RM is the subset of RN where
f is well-defined. We then say that a function f is convex if dom f
is a convex set, and

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y)

for all x,y ∈ dom f and 0 ≤ θ ≤ 1.

This inequality is easier to interpret with a picture. The left-hand
side of the inequality above is simply the function f evaluated along
a line segment between x and y. The right-hand side represents a
straight line segment between f (x) and f (y) as we move along this
line segment, which for a convex function must lie above f .

7

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 20:48, February 3, 2021



f (θx + (1− θ)y)

θf (x) + (1− θ)f (y)

x y

f(x)

f(y)

We say that f is strictly convex if dom f is convex and

f (θx + (1− θ)y) < θf (x) + (1− θ)f (y)

for all x 6= y ∈ dom f and 0 < θ < 1.

Note also that we say that a function is f is concave if−f is convex,
and similarly for strictly concave functions. We are mostly interested
in convex functions, but this is only because we are mostly restricting
our attention to minimization problems. We justified this because
any maximization problem can be converted to a minimization one
by multiplying the objective function by −1. Everything that we say
about minimizing convex functions also applies maximizing concave
ones.

Note that in the definition above, the domain matters. For example,

f (x) = x3

is convex if dom f = R+ = [0,∞] but not if dom f = R.
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It will also sometimes be useful to consider the extension of f from
dom f to all of RN , defined as

f̃ (x) = f (x), x ∈ dom f, f̃ (x) = +∞, x 6∈ dom f.

If f is convex on dom f , then its extension is also convex on RN .

The epigraph

A useful notion that we will encounter later in the course is that of
the epigraph of a function. The epigraph of a function f : RN → R
is the subset of RN+1 created by filling in the space above f :

epi f =

{[
x
t

]
∈ RN+1 : x ∈ dom f, f (x) ≤ t

}
.

epi f
f

It is not hard to show that f is convex if and only if epi f is a convex
set. This connection should help to illustrate how even though the
definitions of a convex set and convex function might initially appear
quite different, they actually follow quite naturally from each other.
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Examples of convex functions

Here are some standard examples for functions on R:

• f (x) = x2 is (strictly) convex.

• affine functions f (x) = ax+ b are both convex and concave for
a, b ∈ R.

• exponentials f (x) = eax are convex for all a ∈ R.

• powers xα are:

– convex on R+ for α ≥ 1,

– concave for 0 ≤ α ≤ 1,

– convex for α ≤ 0.

• |x|α is convex on all of R for α ≥ 1.

• logarithms: log x is concave on R++ := {x ∈ R : x > 0}.
• the entropy function −x log x is concave on R++.

Here are some standard examples for functions on RN :

• affine functions f (x) = 〈x,a〉+b are both convex and concave
on all of RN .

• any valid norm f (x) = ‖x‖ is convex on all of RN .

• if f1(x) and f2(x) are both convex, then the sum f1(x)+f2(x)
is also convex.
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A useful tool for showing that a function f : RN → R is convex is
the fact that f is convex if and only if the function gv : R→ R,

gv(t) = f (x + tv), dom g = {t : x + tv ∈ dom f}

is convex for every x ∈ dom f , v ∈ RN .

Example:

Let f (X) = − log detX with dom f = SN++, where SN++ denotes the
set of symmetric and (strictly) positive definite matrices. For any
X ∈ SN++, we know that

X = UΛUT,

for some diagonal, positive Λ, so we can define

X1/2 = UΛ1/2UT, and X−1/2 = UΛ−1/2UT.

Now consider any V ∈ SN and t such that X + tV ∈ SN++:

gV (t) = − log det(X + tV )

= − log det(X1/2(I + tX−1/2V X−1/2)X1/2)

= − log detX − log det(I + tX−1/2V X−1/2)

= − log detX −
N∑
n=1

log(1 + σit),

where the σi are the eigenvalues of X−1/2V X−1/2. The function
− log(1 + σit) is convex, so the above is a sum of convex functions,
which is convex.
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Operations that preserve convexity

There are a number of useful operations that we can perform on a
convex function while preserving convexity. Some examples include:

• Positive weighted sum: A positive weighted sum of con-
vex functions is also convex, i.e., if f1, . . . , fm are convex and
w1, . . . , wm ≥ 0, then w1f1 + . . . + wmfm is also convex.

• Composition with an affine function: If f : RN → R
is convex, then g : RD → R defined by

g(x) = f (Ax + b),

where A ∈ RN×D and b ∈ RN , is convex.

• Composition with scalar functions: Consider the func-
tion f (x) = h(g(x)), where g : RN → R and h : R→ R.

– f is convex if g is convex and h is convex and non-decreasing.
Example: eg(x) is convex if g is convex.

– f is convex if g is concave and h is convex and non-
increasing.
Example: 1

g(x)
is convex if g is concave and positive.

• Max of convex functions: If f1 and f2 are convex, then
f (x) = max (f1(x), f2(x)) is convex.
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Technical Details: Basic topology in RN

Here we provide a brief review of basic topological concepts in RN .
Our discussion will take place using the standard Euclidean distance
measure (i.e., `2 norm), but all of these definitions can be generalized
to other metrics. An excellent source for this material is [Rud76].

A recurring theme in this course relates to the convergence of an
iterative algorithm. We say that a sequence of vectors {xk, k =
1, 2, . . .} converges to x̂ if

‖xk − x̂‖2 → 0 as k →∞.

More precisely, this means that for every ε > 0, there exists an nε
such that

‖xk − x̂‖2 ≤ ε for all k ≥ nε.

It is easy to show that a sequence of vectors converge if and only if
their individual components converge point-by-point.

A set X is open if we can draw a small ball around every point in
X which is also entirely contained in X . More precisely, let B(x, ε)
be the set of all points within ε of x:

B(x, ε) = {y ∈ RN : ‖x− y‖2 ≤ ε}.

Then X is open if for every x ∈ X , there exists an εx > 0 such that
B(x, εx) ⊂ X . The standard example here is open intervals of the
real line, e.g. (0, 1).

There are many ways to define closed sets. The easiest is that a
set X is closed if its complement is open. A more illuminating (and
equivalent) definition is that X is closed if it contains all of its limit
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points. A vector x̂ is a limit point of X if there exists a sequence
of vectors {xk} ⊂ X that converge to x̂.

The closure of a general set X , denoted cl(X ), is the set of all limit
points of X . Note that every x ∈ X is trivially a limit point (take
the sequence xk = x), so X ⊂ cl(X ). By construction, cl(X ) is the
smallest closed set that contains X .

Related to the definition of open and closed sets are the technical
definitions of boundary and interior. The interior of a set X is the
collection of points around which we can place a ball of finite width
which remains in the set:

int(X ) = {x ∈ X : ∃ ε > 0 such that B(x, ε) ⊂ X}.
The boundary of X is the set of points in cl(X ) that are not in the
interior:

bd(X ) = cl(X )\ int(X ).

Another (equivalent) way of defining this is the set of points that are
in both the closure of X and the closure of its complement X c. Note
that if the set is not closed, there may be boundary points that are
not in the set itself.

The set X is bounded if we can find a uniform upper bound on
the distance between two points it contains; this upper bound is
commonly referred to as the diameter of the set:

diamX = sup
x,y∈X

‖x− y‖2.

The set X ⊂ RN is compact if it is closed and bounded. A key
fact about compact sets is that every sequence has a convergent sub-
sequence — this is known as the Bolzano-Weierstrauss theorem.
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