
ECE 6270, Spring 2021

Homework #5

Due Sunday, April 25, at 11:59pm

1. Prepare a one paragraph summary of what we talked about since the last assignment.
I do not want just a bulleted list of topics, I want you to use complete sentences and
establish context (Why is what we have learned relevant? How does it connect with
other classes?). The more insight you give, the better.

2. You have a large amount of money M that you are going to gamble on a horse race.
You want to be smart about it, though.

There are N horses running in the race. You will divide up your money to place a
bet of xi on each of them. Clearly,

N∑
i=1

xi = M.

As with any parimutuel betting scenario, if horse i wins, the payout to you is propor-
tional to the amount you bet on horse i versus what everybody else (the “public”)
bet on horse i. If you wager xi on horse i and the public wagers si then

payout if horse i wins = C · (total amount of money bet on all horses) · xi
xi + si

= C ·

(
M +

N∑
i=1

si

)
xi

xi + si
.

The constant C above is less than 1, and represents the fact that the track takes a
cut of all the bets (the “vigorish” or ”vig” is 1 − C). A typical value of C might be
0.8 or 0.9.

The reason you are betting is that you have two pieces of key knowledge about this
race. First, you know the actual probability pi that horse i will win. Second, you
know si, the amount that the public will end up placing on horse i.

(a) With your knowledge of the probabilities p and public money si, write down
a convex optimization program answer will tell you how much to bet on each
horse to maximize your expected return. (In the end, you should be maximizing
a concave function over a convex set.)

(b) Using Fenchel duality, show how this expected payout can be computed by solv-
ing an optimization program in one variable. (Hint: look at the resource alloca-
tion example in the notes.) All of the relevant functions are given to you here,
so you can (and should) compute their conjugates explicitly.

(c) Show how the primal optimal solution (the best xi) can be recovered from the
(single variable) dual solution.

(d) Here are the track odds right before closing:1:

1These are the odds from the morning of the 2020 Kentucky Derby, but where I have removed horses
with odds of 30-1 or longer to keep things simpler.
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1. Tiz the Law 3-5
2. Honor A. P. 7-1
3. Authentic 8-1
4. Ny Traffic 12-1
5. Money Moves 13-1
6. Max player 19-1
7. Enforceable 22-1
8. Storm the Court 27-1

Saying horse i has track odds A-B simply means that a bet of B will yield A
in profit (and a total return of A + B) should horse i win. From the payout
equation above, this tells us that if horse i has odds A-B, then2

A+B = C

(
N∑
i=1

si

)
B

si
.

Note that by examining these odds, you can infer what the vig is (1−C). If you
know the total amount the public has wagered you can also determine the si’s.
Suppose that the public has wagered a total of $20 million on this race.

You happen to have some inside information that makes you believe that Tiz
the Law is not as strong a favorite as the public seems to believe. Based on your
information you think that the true probabilities are

1. Tiz the Law 25%
2. Honor A. P. 25%
3. Authentic 25%
4. Ny Traffic 7%
5. Money Moves 6%
6. Max player 5%
7. Enforceable 4%
8. Storm the Court 3%

You have $500,000. How much do you bet on each horse? What is your expected
return? (You should calculate your return using the value of C and the si’s
determined by your optimization problem.) What is the variance (a simple
measure of risk) of your expected return?

(e) Authentic won the race.3 How much profit did you make?

(f) Explore how your answer changes if you bet larger amounts (in terms of the
strategy, expected return, and risk). Can you explain why your betting strategy
changes as the amount wagered goes up?

3. In this problem we will explore two alternative approaches to solving a simple variant
of the least squares problem where we add the constraint that the solution is non-
negative, i.e., we wish to solve

minimize
x∈RN

1

2
‖y −Ax‖22 subject to x ≥ 0.

2Note that this payout equation represents the payoffs that would be made taking into account the bets
that have been made up till now, but before taking into account any bets you will make at the last minute.

3This actually happened.
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This is natural in many practical applications where the entries of x have physical
interpretations (e.g., light intensity, power, concentration of some physical material,
etc.) that don’t really make sense as negative quantities. Below we will assume
throughout that A is an M ×N matrix with M > N and that A is full rank.

(a) Derive the Lagrangian function for this optimization problem (pay careful at-
tention to the sign of each term).

(b) Show that the dual optimization problem is itself another nonnegative least
squares problem. Do this by deriving the dual function d(λ) by first finding the
x that minimizes the Lagrangian L(x,λ), and then plugging this into L(x,λ).
Simplify the dual optimization problem as much as possible.

(c) Recall from the notes that one of the KKT conditions (KKT4) is that if x?,λ?

are primal/dual optimal, then ∇xL(x?,λ?) = 0. Show that this implies that for
the solution

ATAx? −ATy − λ? = 0.

(Note that it is easy to find a x and λ that satisfy the condition above – for any
x we can form a λ that will make this identity true. The trick is that usually
the resulting λ will not actually satisfy λ ≥ 0.)

(d) Try solving a nonnegative least squares problem using CVXPY. The file hw06.py
contains some code to set up a nonnegative least squares problem and then solve
it using CVXPY. Make sure you understand what the code is doing, and verify
that the resulting solution satisfies the optimality condition from part (c).

(e) Implement the projected gradient descent approach described on page 15 of
the notes. This should be a minor variation on something you have already
implemented before, but there are two important caveats. First, when we solved
least squares problems before using gradient descent, we calculated the optimal
step size αk at each iteration. This is much tougher to do in this case because
the actual optimal step size would involve figuring out what α is optimal after
accounting for the projection step, and this is not easy to do in closed form. You
should either use a line search to choose α, or just take a fixed step size. For
guidance, the theory guarantees convergence if α ≤ 1/‖ATA‖2.
The second challenge here involves defining a stopping criterion. You cannot
expect that the norm of the gradient will be zero at the solution. Instead you
could either define a stopping criterion involving ‖x(k)−x(k−1)‖2, or alternatively
you could do something inspired by part (c) above.

(f) Another way to solve this problem that avoids having to worry about a step size
is a primal-dual approach where we take alternating steps over x and λ with the
goal of satisfying the condition in (c). Specifically, suppose that we are given an
estimate λ(k). We can then update x by solving the optimality condition from
part (c) to obtain

x(k+1) =
(

(ATA)−1(ATy + λ(k))
)
+
.

Note that we include the projection onto the set of nonnegative x since, in
general, (ATA)−1(ATy+λ(k)) will lead to negative entries (unless we are already
at convergence). Next we can update λ by again solving the optimality condition
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from part (c), which in this case yields

λ(k+1) =
(
ATAx(k+1) −ATy

)
+
,

where again we project the näıve solution to the optimality condition onto the
set of nonnegative λ. Implement this algorithm and compare the results to the
projected gradient descent approach from the previous problem.

4. We have presented gradient descent as a basic method for solving smooth uncon-
strained problems. In this problem we will explore its use in solving nonsmooth
constrained problems, specifically linear programs.

(a) Consider the linear program in R2,

min
x
〈x, c〉 subject to 〈x,am〉 ≤ bm

where

c =

[
1
1

]
, am =

[
cos(mπ/3)
sin(mπ/3)

]
, bm = 1, m = 1, 2, . . . , 6.

Sketch the feasible region in the plane – the region where all six linear constraints
hold. Using Python, create an image of 〈x, c〉 over the feasible region. Where is
the minimizer x??

(b) Now consider the smooth, unconstrained problem

min
x
〈x, c〉 − 1

τ

6∑
m=1

log(bm − 〈x,am〉).

Using Python, create an image of the functional over the feasible region for τ = 1.
What is happening near the boundary?

(c) Solve the program above using gradient descent (with backtracking – you can set
c1 = 0.001 and ρ = 0.8) for τ = 1, 10, 100, 500, 1000 and starting at the origin,
x0 = 0. Make a figure of the feasible region, then put an ’x’ where your solution
landed for these different τ . Note how many iterations it took for each τ .

(d) Do the same, but use the solution for τ = 1 as the starting point for τ = 10 then
use that solution for τ = 100, etc. How many total iterations does it take to get
the answer for τ = 1000?

5. Consider the general quadratic programming problem with linear constraints:

min
x

1

2
xTPx+ 〈x, q〉 subject to Ax ≤ b.

We will assume that P is symmetric positive definite (and so has full rank).

(a) Find the dual.
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(b) Show how the primal optimal solution x? can be computed from the dual optimal
solution λ?. (You should be able to convince yourself that both programs have
unique solutions.)

(c) Describe how we can use ADMM to solve the dual problem (in a non-distributed
manner, to start).

(d) Describe how we can write the dual as

min
α,β

g(α) + h(β),

where g(·) is separable (a sum of individual components of α) and h(·) is an
indicator of a convex set which we can easily project onto. Write down explicitly
how this projection operator works.

(e) Using your results from part (d), describe how we can use distributed ADMM
to solve the dual program.

6. Consider the optimization problem

minimize
z

‖z‖1 +
1

2α
‖z − v‖22, (1)

where v is a fixed vector. This is the optimization problem that defines the prox
operator of the `1 norm, and it arises in many approaches to solving the LASSO (e.g.,
ADMM). We claimed in class that the solution to this optimization problem is given
by z? = Tα(v) where

[Tα(v)]i =


vi − α, vi > α

0, |vi| ≤ α
vi + α, vi < −α.

Prove that this is indeed the case.

7. (Optional.) In this problem you will solve the LASSO using a distributed implemen-
tation of ADMM.

(a) Begin by creating an instance of your problem by creating a matrix A which is
M × N where N = 10M with standard normal random variables as entries. I
will let you experiment with the size M and N . The goal is to make these large,
but not so large that you cannot possibly solve the problem given the constraints
of your personal machine. Crease a vector of observations b by choosing a sparse
vector x0 that has at most M/4 nonzero entries and computing b = Ax0 and
then adding a small amount of noise.

(b) Implement a non-distributed version of ADMM and apply it to your problem.
You can use whatever method you prefer to solve the least squares problem at
each iteration. You will need to tune the parameter τ to ensure that you are in
a regime where you are doing a good job of estimating x0.

(c) Using www.cvxpy.org/examples/applications/consensus_opt.html as a guide,
create a distributed implementation of ADMM for your problem (you can use the
same basic structure, but do not use CVXPY to solve the subproblems, instead
solve the least squares problem and implement soft-thresholding explicitly.
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(d) Compare the run times for the two approaches (the difference here will depend
significantly on the specifics of your hardware). Try this comparison for a few
different sizes of problems and comment on what you observe.
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