
ECE 6270, Spring 2021

Homework #5

Due Sunday, March 28, at 11:59pm Suggested Reading: B&V, Sections 3.3, 5.1,
5.2, and 5.5.

1. Prepare a one paragraph summary of what we talked about since the last assignment.
I do not want just a bulleted list of topics, I want you to use complete sentences and
establish context (Why is what we have learned relevant? How does it connect with
other classes?). The more insight you give, the better.

2. Provide feedback to your peers on Homework #4 in Canvas.

3. Subdifferentials. In the notes we showed that the subdifferential of ‖x‖1 at x is
given by vectors u that satisfy

un = sign(xn) if xn 6= 0,

|un| ≤ 1 if xn = 0.

Note that we could also write this as

∂‖x‖1 =
{
u : ‖u‖∞ = 1,uTx = ‖x‖1

}
.

It turns out that the subdifferential of ‖x‖∞ takes the related form:

∂‖x‖∞ =
{
u : ‖u‖1 = 1,uTx = ‖x‖∞

}
.

(a) Describe a simple procedure for constructing a vector u ∈ ∂‖x‖∞ from x.

(b) Show that if u satisfies ‖u‖1 = 1 and uTx = ‖x‖∞, then it must be a subgradi-
ent.

(c) Show that if u is a subgradient of ‖x‖∞, then it must satisfy ‖u‖1 = 1 and
uTx = ‖x‖∞.

4. The support function and dual norms. In this problem we will explore the
notion of the support function and dual norms for some common `p norms. In the
problems below, let Bp = {x ∈ RN : ‖x‖p ≤ 1}, where ‖ · ‖p denotes the standard `p
norm on RN , and let ‖ · ‖p∗ denote the dual norm corresponding to ‖ · ‖p.

(a) Compute the support function hB2(ν).

(b) Show that the `2 norm is “self-dual”: ‖ · ‖2∗ = ‖ · ‖2.
(c) Compute the support function hB1(ν).

(d) Show that ‖ · ‖1∗ = ‖ · ‖∞.

(e) Compute the support function hB∞(ν).

(f) Show that ‖ · ‖∞∗ = ‖ · ‖1.
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5. The convex conjugate and subdifferentials. There is a close relationship between
the subdifferential of a function f and its convex conjugate f∗. In this problem you
will explore some of these connections. In the problems below, we will assume that f
is convex.

(a) Show that if ν ∈ ∂f(x), then x ∈ ∂f∗(ν).

(b) Now suppose that f closed (and hence f∗∗ = f). Show that if x ∈ ∂f∗(ν) then
ν ∈ ∂f(x).

6. Descent cones. In our discussions about the theory and practice of unconstrained
optimization of differentiable functions, we often referred to the notion of a descent
direction. Recall that d is a descent direction for f at a point x0 if

f(x0 + td) < f(x0) for some t > 0.

For convex, differentiable f , this is equivalent to the condition 〈d,∇f(x0)〉 < 0.

(a) Prove that for a (not necessarily differentiable) convex function, the set

D(x0) = {d : f(x0 + td) ≤ f(x0) for some t > 0}

is a convex cone. D(x0) is called the descent cone or cone of descent of f at x0.

(b) Describe D(x0) for f(x) = ‖x‖22.
(c) Describe D(x0) for f(x) = ‖x‖1.

(Your answer should be a very clean expression in terms of the set Γ0 where x0

is non-zero and the signs of the entries of x0 on Γ0.)

7. Lagrangian duality. Here we explore Lagrangian duality with a simple example.
Consider the optimization problem

minimize
x∈R

x2 + 1

subject to (x− 2)(x− 4) ≤ 0.

(a) Provide as simple as possible of a description of the feasible set.

(b) Determine both the minimizer x? as well as the value of the objective function
at the minimizer.

(c) Plot the objective function, indicating in your plot the feasible set. Also plot
the Lagrangian L(x, λ) for a few values of λ.

(d) Derive and plot the dual function d(λ).

(e) State the dual problem and find the maximizer λ? as well as the value d(λ?).
Does strong duality hold?
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8. Penalization for equality constraints. Consider the constrained optimization
problem

minimize
x∈RN

f(x)

subject to Ax = b,
(1)

where f(x) is convex and differentiable and A is an M × N matrix. Next, consider
the unconstrained problem given by

minimize
x∈RN

f(x) + α‖Ax− b‖22, (2)

where α > 0 is a parameter. Intuition would suggest that the solution to (2) should
be an approximation to the original problem. Let x̃ denote a solution to (2), and
consider the vector defined by ν̃ = 2α(Ax̃− b). Show how to use ν̃ to derive a lower
bound on the optimal value of (1).

9. Optimal power allocation for Gaussian channels. There is a classic problem in
information theory for which the KKT conditions reveal an elegant solution. The sce-
nario is as follows: we are trying to communicate from point A to point B, and we have
N different channels available. The channels are Gaussian in that the relationship
between the input In and output On is

On = In + Zn, Zn ∼ Normal(0, σ2n).

It is a classic result in information theory that at most we can learn

Cn =
1

2
log2

(
1 +

pn
σ2n

)
, pn = E[I2n],

bits of information about In from the observation On per transmission — this quantity
is called the channel capacity. We can interpret pn as the (average) power needed to
transmit In and pn/σ

2
n as the signal to noise ratio. As we commit more power to the

transmission in channel n, we are able to communicate more information per usage.
If we assign powers p1, . . . , pN to each of the channels, the total capacity is

C =

N∑
n=1

1

2
log2

(
1 +

pn
σ2n

)
.

Suppose now that we have a constraint on the total (expected) power we can use for
a transmission:

N∑
n=1

pn ≤ p.

In this problem we will ask: what is the optimal way to allocate this power between
the N channels to maximize the capacity?
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We can cast this question as a convex optimization program. First, it is pretty clear
that no matter what, we want to use the maximum power available to us, so we will
just take the constraint above to be an equality constraint. Let xn be the fraction of
the total power allocated to channel n:

xn =
pn
p
.

Then

log2

(
1 +

pn
σ2n

)
= log2(αn + xn)− log2(αn), αn =

σ2n
p
.

Our task is then to solve

maximize
x∈RN

1

2

N∑
n=1

log2(αn + xn)− log2(αn) subject to xn ≥ 0,

N∑
n=1

xn = 1.

This is equivalent to

minimize
x∈RN

−
N∑

n=1

log2(αn + xn) subject to x ≥ 0, 1Tx = 1.

(a) Write down the KKT conditions for this problem. There are N inequality con-
straints and 1 equality constraint, so your answer should relate the optimal x?

to λ? and ν?.

(b) Simplify your answer to the previous part so that it only depends on ν?.

(c) Show how given the single number ν? we can recover the optimal x?.

(d) Write the equality constraint in terms of ν?. Describe an algorithm for finding
the ν? that meets this constraint.

(e) Make an informative sketch and interpret your result.

10. The LASSO. In this problem you will implement both subgradient descent and
proximal gradient descent to solve the LASSO:

minimize
x∈RN

1

2
‖y −Ax‖22 + τ‖x‖1.

In the problems below, you will evaluate your code by testing it on the problem
defined by the following code:

import numpy as np

np.random.seed(2021) # Set random seed so results are repeatable

# Set parameters

M = 100

N = 1000

S = 10

# Define A and y

A = np.random.randn(M,N)
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ind0 = np.random.choice(N,S,0) # index subset

x0 = np.zeros(N)

x0[ind0] = np.random.rand(S)

y = A@x0 + .25*np.random.randn(M)

(a) Use CVXPY to solve the LASSO using the data above for a few values of τ .
What value of τ seems to work best? Use this value in the subsequent parts of
this problem.

(b) Implement subgradient descent for this problem. Produce a plot showing the
value of the objective function as a function of iteration number. Show results
for the following step size selection rules: αk = α, αk = α/

√
k, αk = α/k. For

each rule tune α to get reasonable performance.

(c) Implement the proximal gradient method for this problem (without acceleration).
Use a fixed step size α. You may tune this manually, but there is also a principled
choice. Produce a plot showing the value of the objective function as a function
of iteration number

(d) Implement the proximal gradient method with acceleration. Use the same choice
of α as in the previous part and use the rule βk = (k−1)/(k+2). Produce a plot
showing the value of the objective function as a function of iteration number
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