
ECE 6270, Spring 2021

Homework #4

Due Thursday, March 4, at 11:59pm Suggested Reading: B&V, Sections 9.2
(again) and 9.5.

1. Prepare a one paragraph summary of what we talked about since the last assignment.
I do not want just a bulleted list of topics, I want you to use complete sentences and
establish context (Why is what we have learned relevant? How does it connect with
other classes?). The more insight you give, the better.

2. Provide feedback to your peers on Homework #3 in Canvas.

3. 1D optimization. Consider the function

f(x) =


25x2 x < 1

x2 + 48x− 24 1 ≤ x ≤ 2

25x2 − 48x+ 72 x > 2

(a) Prove that f is strongly convex with parameter m = 2 and is M -smooth with
M = 50.

(b) What is the global minimizer of f? Justify your answer.

(c) Run the gradient descent with αk = 1/50, the heavy ball method with αk = 1/8
and βk = 2/3, and Nesterov’s method with αk = 1/50 and βk = (k− 1)/(k+ 2).
In all cases initialize at x0 = 3. Plot the function value versus the iteration
counter for each method.

(d) Repeat part (3c), tuning the parameters of each algorithm to achieve the fastest
rate of convergence. Make a plot of the function value versus the iteration
counter. What are the best parameters for each algorithm?

4. Backtracking convergence. Recall that when using backtracking to select a step
size to move from xk in direction dk, we start with α = ᾱ, and then iteratively
decrease α by factor of ρ < 1 until we satisfy the Armijo condition

f(xk + αdk) ≤ f(xk) + c1α〈d,∇f(xk)〉, (1)

where 0 < c1 < 1 is some user-defined parameter.

(a) Show that if f is M -smooth and dk is a descent direction, then when

α ≤ 2(c1 − 1)
〈dk,∇f(xk)〉
M‖dk‖22

the Armijo condition (1) must hold. [Hint: Recall condition (iv) from Problem
5 of Homework 3.]
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(b) Use this to derive an upper bound on the number of backtracking iterations
(i.e., the number of times we have to multiply α by ρ) assuming ᾱ = 1 and
dk = −∇f(xk). Your answer should depend on ρ, c1, and M .

5. Proximal minimization. Let f be a convex function that is M -smooth but not
strongly convex. In this problem we will show that we can always form a strongly
convex perturbation of f that will be close to f . In particular, suppose that we have
an estimate x0 that we think is in the rough neighborhood of x? (e.g., if we have an
upper bound on ‖x?‖2, then x0 = 0 is a possible choice). Consider the function

fδ(x) = f(x) +
δ

2
‖x− x0‖22.

(a) Let x?δ denote a minimizer of fδ. Is x?δ unique?

(b) Argue that if x0 is a minimizer of f , then x?δ = x0.

(c) Prove that f(x?δ) − f(x?) ≤ δ
2‖x

? − x0‖22. Thus, if δ and/or x0 are chosen
appropriately, x?δ does almost as good of a job at minimizing f as x?.

(d) The modified function fδ is now both Mδ-smooth as well as strongly convex
(with parameter mδ). Determine the parameters Mδ and mδ.

6. Socially distanced robots. In class we saw that a way of making a swarm of
robots meet as the same location was to have the robots move in the steepest descent
direction to the cost

N∑
n=1

∑
m∈Nn

‖p(n) − p(m)‖22

where p(n) the position of robot n and Nn is the set containing the indices off all of
robot n’s neighbors. If we assume that the neighborhood relationship is symmetric,
i.e., m ∈ Nn ⇔ n ∈ Nm we showed that he steepest descent update law becomes

p
(n)
k+1 = p

(n)
k − αk

∑
m∈Nn

(p
(n)
k − p

(m)
k ),

where p
(n)
k is the position of robot n at time step k, and αk > 0 is the step size at

time k.

(a) If the robots are socially distant, however, they should not try to meet at the
same location, but end up a distance ∆ > 0 away from each other, which can be
encoded through the cost

N∑
n=1

∑
m∈Nn

(
‖p(n) − p(m)‖22 −∆2

)2
.

What is the corresponding so-called formation controller that results from a
gradient descent step on this new objective function?
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(b) Implement this formation controller. Initialize your problem using

import numpy as np

np.random.seed(2021)

p = np.random.uniform(0,50,[2,10])

In the above, p is a 2× 10 array that represents the initial locations of 10 robots
that have been placed at random in a 50 × 50 square. In your controller, use
a fixed step size (you will need to tune this to ensure convergence) and set
∆ = 6. Note that your initialization begins with some robots that are not
respecting social distancing! Watch what happens to those robots over the first
few iterations. Turn in a plot of the configuration that your algorithm converges
to.

(c) Now consider the formation controller that would arise by using Nesterov’s
method to minimize this objective function. Write down the update rule. Next
implement this controller on the same scenario as in the previous part. Again,
used a fixed step size for αk. Set βk = (k − 1)/(k + 2). Compare the results to
what you obtained using simple gradient descent.

(d) We could also derive a controller for this problem using Newton’s method. Com-
ment on the benefits and drawbacks of using Newton’s method in this context.

7. Smoothed data fitting. Suppose that we observe a sequence of N observations
given by yn = xn + en, where en represents noise, and consider the case where xn
represents samples of some underlying smooth function, so that we do not expect xn
to be too different from xn−1 and xn+1. One approach to “denoising” the observations
yn to obtain a smoothed estimate of xn is to solve the optimization problem

minimize
x∈RN

1

2

N∑
n=1

(xn − yn)2 +
λ

2

N−1∑
n=1

(xn+1 − xn)2.

(a) Calculate the gradient of this objective function. Write your answer in vector
notation (in terms of the vectors x and y in RN ). Your answer should involve
the tri-diagonal matrix

D =



1 −1
−1 2 −1

−1 2
. . .

. . .
. . .

. . .
. . . 2 −1

−1 2 −1
−1 1


.

(b) Calculate the Hessian matrix for this objective function.

(c) Write down the update equation for Newton’s method. Simplify your answer as
much as you can, but you may again leave things in terms of D (i.e., do not
worry about explicitly calculating D−1).
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(d) Do you think that Newton’s method would be a scalable solution to this problem
when N is very large? Why or why not?

8. More logistic regression. Recall the logistic regression problem from Homework
3. In this problem we will continue where we left off and evaluate the performance of
new algorithms that we have learned about since the last homework.

(a) Last time we implemented gradient descent using a bisection algorithm to choose
the optimal α (up to some tolerance) at each iteration. Now try replacing this
linear search with a standard backtracking algorithm. Experiment with the
parameters c1 and ρ. Report the c1 and ρ that work best. Report how many
gradient steps are now required when using this line search. Also report the
total number of iterations taken by the combined backtracking searches. How
does this compare to the results you obtained last time using bisection?

(b) Next implement a solver for this problem using the heavy ball method. First try
setting α ≈ 0.001 and βk ≈ 0.95 and run the code with these fixed step sizes.
Play around with α and β to see if you can get any improvement. Report the
values of α and β that work best, and how many iterations the method requires.
Then try using backtracking (using the same parameters as before) to adjust
α at each iteration (you can leave β fixed here). Now how many iterations are
required?

(c) Next implement a solver using Nesterov’s method. Try both using a fixed stepsize
of α ≈ 0.001 as well as backtracking. Use the rule of thumb βk = (k−1)/(k+2).
Report how many iterations are required for both versions.

(d) Next implement a solver using Newton’s method setting α using backtracking
(be sure to start with ᾱ = 1). Report the number of Newton steps required.

(e) Finally, implement a solver using the BFGS method, again setting α using back-
tracking with ᾱ = 1. Report the number of quasi-Newton steps required.
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