
ECE 6270, Spring 2021

Homework #3

Due Sunday, Feb 14, at 11:59pm Suggested Reading: B&V, Sections 4.2.1-4.2.3
and 9.2-9.3 (You can skip the convergence analysis in 9.3 for now.)

1. Prepare a one paragraph summary of what we talked about in the last week of class.
I do not want just a bulleted list of topics, I want you to use complete sentences and
establish context (Why is what we have learned relevant? How does it connect with
other classes?). The more insight you give, the better.

2. Provide feedback to your peers on Homework #2 in Canvas.

3. Monotone gradients. In class we showed that or a differentiable function f being
convex is equivalent to the statement that

f(x) ≥ f(y) + 〈x− y,∇f(y)〉, (1)

for all x,y ∈ dom f . Here we will provide another equivalent characterization of
convexity for differentiable f . Specifically, the first-order condition in (1) is equivalent
to the statement that

〈y − x,∇f(y)−∇f(x)〉 ≥ 0 (2)

for all x,y ∈ dom f . This is often called the monotone gradient condition.

(a) Prove that (1) implies (2).

(b) (Optional) Prove that (2) implies (1), and thus the conditions are actually equiv-
alent. [Hint: Consider the function φ(α) = f(x+ α(y − x)) and recall that the
Fundamental Theorem of Calculus tells us that φ(1)− φ(0) =

∫ 1
0 φ
′(α)dα.]

(c) Consider a one-dimensional differentiable convex function f(x). Assume that
f(x) has a unique global minimum x?. What does the above condition say
about f ′(x) for x > x?? What about f ′(x) for x < x??

4. Strong convexity. In analyzing gradient descent and other algorithms we will some-
times consider the assumption that f is strongly convex, i.e., there exists an m > 0
such that

f(y) ≥ f(x) + 〈y − x,∇f(x)〉+
m

2
‖y − x‖22 (3)

for all x,y ∈ dom f . Note that above we assume f is differentiable in our definition
of strong convexity, and that any f satisfying (3) must be convex. When f is strongly
convex, the following statements are equivalent:

(i) f is strongly convex with constant m, i.e., it satisfies (3).

(ii) g(x) = f(x)− m
2 ‖x‖

2
2, where dom g = dom f , is convex.

(iii) 〈x− y,∇f(x)−∇f(y)〉 ≥ m‖x− y‖22 for all x,y ∈ dom f .

In this problem you will show that these are equivalent.
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(a) Prove that (i) is equivalent to (ii).

(b) Prove that (ii) is equivalent to (iii).

5. Lipschitz gradients. In our convergence analysis of gradient descent we will also
consider the assumption that ∇f is Lipschitz, i.e., there exists an M > 0 such that

‖∇f(x)−∇f(y)‖2 ≤M‖x− y‖2 (4)

for all x,y ∈ dom f . When f is convex and differentiable, the following statements
are equivalent:

(i) ∇f is Lipschitz with constant M , i.e., it satisfies (4).

(ii) 〈x− y,∇f(x)−∇f(y)〉 ≤M‖x− y‖22.
(iii) g(x) = M

2 ‖x‖
2
2 − f(x) is convex.

(iv) f(y) ≤ f(x) + 〈y − x,∇f(x)〉+ M
2 ‖y − x‖

2
2.

(v) f(y) ≥ f(x) + 〈y − x,∇f(x)〉+ 1
2M ‖ ∇f(y)−∇f(x)‖22.

(vi) 〈x− y,∇f(x)−∇f(y)〉 ≥ 1
M ‖∇f(x)−∇f(y)‖22.

In the statements above, x,y can be arbitrary vectors in dom f . In this problem you
will show that these are all equivalent.

(a) Prove that (i) implies (ii).

(b) Prove that (ii) implies (iii). [Hint: From problem 3 we know that showing that
g(x) is convex is equivalent to establishing the monotonicity of the gradient.]

(c) Prove that (iii) implies (iv).

(d) Prove that (iv) implies (v). This is the hardest, so I will give you a short outline
of how to approach this. First, use (iv) and what you know about convexity to
show that

f(x)− f(y) ≤ 〈x− z,∇f(x)〉+ 〈z − y,∇f(y)〉+
M

2
‖z − y‖22

holds for any z ∈ dom f . Since this holds for any z, you can find the z that
minimizes this upper bound – find this z by taking the gradient with respect
to z and setting this equal to zero, then plug this back into this expression and
simplify.

(e) Prove that (v) implies (vi).

(f) Prove that (vi) implies (i).

6. Convergence Rates. A central focus when considering different optimization al-
gorithms is the rate of convergence. It is often not enough to merely argue that the
algorithm converges – we want to know how quickly it will do so, and the rate of
convergence allows us to quantify this. In the problems below, we assume that {xk}
is a sequence that converges to x?. We say that {xk} converges linearly with a rate
of convergence of β if

lim
k→∞

|xk+1 − x?|
|xk − x?|

= β

for some β ∈ (0, 1). If β = 1 we say that {xk} converges sublinearly, and if β = 0 we
say that {xk} converges superlinearly.
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(a) Suppose that {xk}∞k=0 satisfies |xk+1−x?| ≤ β|xk −x?| for some 0 < β < 1 (and
hence converges linearly with rate β). Prove that |xk − x?| ≤ ε for all

k ≥
log
(
|x0−x?|

ε

)
log
(

1
β

) .

(b) Now suppose that {xk}∞k=0 satisfies |xk−x?| = k
k+1 |xk−1−x

?|. Is this convergence
linear, sublinear, or superlinear? How large must k be to ensure that |xk−x?| ≤ ε

(c) A finer-grained distinction among different kinds of linear/superlinear conver-
gence is the order of convergence. We say that {xk} converges with order q
if

lim
k→∞

|xk+1 − x?|
|xk − x?|q

= γ

for some γ > 0 (not necessarily less than 1). For q = 1 this reverts to linear
convergence, but q = 2 is called quadratic convergence, q = 3 cubic convergence,
and so on. Note that q need be an integer. It might not be initially obvious, but
quadratic convergence is much faster than linear convergence. Consider the two
sequences defined by

xk =
1

2k
zk =

1

22k
.

Both converge to zero. Show that {xk} converges linearly and compute the rate.
Show that {zk} converges quadratically. Submit a plot (on a log scale) that
illustrates the difference in how quickly these converge to zero.

7. Bisection method. The bisection method is a strategy for one-dimensional problems
of the form

minimize
x

f(x) subject to xl ≤ x ≤ xu, (5)

where xl, xu ∈ R satisfy xl < xu and f : R → R is convex. If f is also differentiable,
the bisection algorithm can be expressed as follows:

Set initial bounds: a = xl, b = xu
Initialize k = 0
while not converged do

xk = (a+ b)/2
if f ′(x) > 0 then

b = x
else

a = x
end if
k = k + 1

end while

(a) Provide an intuitive explanation for why this algorithm makes sense in light of
the monotone gradient property of convex functions.

(b) Assume that f is strictly convex, and hence (5) has a unique solution, denoted x?.
Let xk denote the estimate provided by the bisection method after k iterations.
Argue that xk converges to x?.
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(c) Determine whether xk converges linearly, sublinearly, or superlinearly. If linear,
compute the rate of convergence β.

(d) Propose a variant of the bisection method for solving the unconstrained problem
minimizex∈R f(x).

8. Logistic regression. Logistic regression is a simple, but surprisingly powerful, tool
for solving a fundamental problem in machine learning: learning a classifier that
can distinguish between two classes from a set of training data. Specifically, suppose
that we have a set of training data (x1, y1), . . . , (xN , yN ), where each xn ∈ RD is a
“feature vector” and each yn ∈ {0, 1} is a “label” that indicates which of two classes
xn corresponds to. The goal in learning a classifier is to find a function h such that
h(x) predicts the correct label y for x that we have never seen before. We can do this
by trying to learn a function h that gives us h(xn) = yn on (most of) the training set.
In this problem you will explore this idea and implement it on a simple example.

Consider the logistic function

g(t) =
1

1 + e−t
.

Note that g(t) is always a number between 0 and 1. In logistic regression, we set
t = aTx+ b, where a ∈ RD and b ∈ R, so that for any x we can compute g(aTx+ b),
returning a number between 0 and 1. Our goal is to learn the parameters a and b
so that we can interpret g(aTx+ b) as an estimate of the probability that x belongs
to class 1 (and hence, 1 − g(aTx + b) is the probability that x belongs to class 0).
To form a classifier, we then simply compare g(aTx + b) to a threshold in order to
estimate the label based on which one has a higher predicted probability, i.e.,

h(x) =

{
1 if g(aTx+ b) ≥ 1

2 ,

0 if g(aTx+ b) < 1
2 .

(a) Show that h(x) can equivalently be written as

h(x) =

{
1 if aTx+ b ≥ 0

0 if aTx+ b < 0.

(b) Draw a picture illustrating the set {x ∈ R2 : aTx+ b ≥ 0} for

a =

[
1
1

]
b =

1

2
.

(c) The key question in fitting a logistic regression model is deciding on how to set
a and b based on the training data. To see how this is done, note that if yn = 1,
we would like to have g(aTxn + b) ≈ 1, in which case

log(g(aTxn + b)) ≈ 0.

Similarly, if yn = 0, then we would like g(aTxn + b) ≈ 0, or said differently,
1− g(aTxn + b) ≈ 1, in which case

log(1− g(aTxn + b)) ≈ 0.
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Note that in both cases, the terms on the left-hand side are always negative, so
that to make them ≈ 0 corresponds to making these terms as large as possible.
Combining these desired criteria together, we can express the problem of fitting
a and b as

maximize
a,b

∑
n:yn=1

log(g(aTxn + b)) +
∑

n:yn=0

log(1− g(aTxn + b)).

It is somewhat more convenient to re-express this as the equivalent problem:

maximize
a,b

N∑
n=1

yn log(g(aTxn + b)) + (1− yn) log(1− g(aTxn + b)).

Show that, by plugging in the formula for g, this problem reduces to

maximize
a,b

N∑
n=1

yn(aTxn + b)− log(1 + ea
Txn+b).

(d) We would now like to use an iterative algorithm like gradient descent to solve
this optimization problem. To do this, we will need to calculate the gradient.
Note that if we use the notation

x̃n =

[
xn
1

]
θ =

[
a
b

]
,

then we can re-write our objective function as

f(θ) =

N∑
n=1

ynθ
Tx̃n − log(1 + eθ

Tx̃n).

With this notation, compute a formula for the gradient ∇f(θ) and the Hessian
matrix ∇2f(θ). [Hint: You may use the answer from problem 9 of the previous
homework to avoid any actual computation here, but be careful as the notation
in this problem is a little different...]

(e) Do you think −f(θ) is M -smooth for some finite value of M? Do you think
−f(θ) is strongly convex? (You do not have to calculate M or m here.)

(f) Implement a solver for estimating θ using gradient descent. Test your imple-
mentation on the dataset produced by the following code:

import numpy as np

from sklearn import datasets

np.random.seed(2020) # Set random seed so results are repeatable

x,y = datasets.make_blobs(n_samples=100,n_features=2,centers=2,cluster_std=6.0)

Use an initial guess of θ(0) = 0. To begin, consider a fixed step size of α ≈ 0.001
(although you should feel free to play around with α a bit). Report how many
iterations your algorithm takes to converge. Remember that you are trying to
minimize −f(θ). If your algorithm is not converging, a sign error is a likely
culprit.
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(g) Now implement the bisection algorithm from the previous problem, and create a
modified version of gradient descent in which you update α at each iteration using
a line search conducted by running the bisection algorithm to find the optimal
α (up to some tolerance that you should select). Report how many iterations
are now required when using this strategy to find the “optimal” step size at
each iteration. Also report the total number of iterations taken by the combined
bisection searches. Does the bisection strategy seem worth the additional costs?
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