ECE 6270, Spring 2021

Homework #2

Due Sunday, Feb 7, at 11:59pm Suggested Reading: B&V, Sections 2.1-2.4 and 3.1-3.2. You might also want to skim Appendix A.

- 1. Prepare a one paragraph summary of what we talked about in the last week of class. I do not want just a bulleted list of topics, I want you to use complete sentences and establish context (Why is what we have learned relevant? How does it connect with other classes?). The more insight you give, the better.
- 2. Provide feedback to your peers on Homework #1 in Canvas.
- 3. A function $f(\boldsymbol{x}) : \mathbb{R}^N \to \mathbb{R}$ is *concave* if for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^N$,

$$f(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}) \geq \theta f(\boldsymbol{x}) + (1 - \theta)f(\boldsymbol{y}), \text{ for all } 0 \leq \theta \leq 1.$$

Give a simple yet rigorous argument that

$$f(\boldsymbol{x})$$
 is concave $\Leftrightarrow -f(\boldsymbol{x})$ is convex.

- 4. Recall that a norm is a function $\|\cdot\|: \mathbb{R}^N \to \mathbb{R}$ which obeys
 - $||\mathbf{x}|| \ge 0$ and $||\mathbf{x}|| = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
 - $||a\boldsymbol{x}|| = |a| ||\boldsymbol{x}||$ for all $\boldsymbol{x} \in \mathbb{R}^N$ and scalars $a \in \mathbb{R}$.
 - $\|\boldsymbol{x} + \boldsymbol{y}\| \le \|\boldsymbol{x}\| + \|\boldsymbol{y}\|$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^N$.
 - (a) Suppose that $f(\mathbf{x}) = ||\mathbf{x}||$, where $||\cdot||$ denotes any valid norm. Prove that $f(\mathbf{x})$ is convex (using only the properties above).
 - (b) Can $f(\mathbf{x}) = ||\mathbf{x}||$ ever be *strictly* convex? If so, give an example of such a norm. If not, provide a proof that no norm can be strictly convex.
- 5. The α -sublevel set of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the set $S_\alpha = \{x : f(x) \le \alpha\}$.
 - (a) Suppose f is convex. Show that S_{α} is convex for all $\alpha \in \mathbb{R}$.
 - (b) Suppose f is convex. Show that the set of global minimizers of f is a convex set.
 - (c) Recall that the unit ball of a norm is the set $\mathcal{B} = \{x : ||x|| \le 1\}$. Show that the unit ball of any norm must be convex.
 - (d) Optional: Suppose S_{α} is convex for all $\alpha \in \mathbb{R}$. Is f convex? Prove or find a counterexample.
- 6. (a) Let $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$ be convex functions on \mathbb{R}^N . Show that

$$f(\boldsymbol{x}) = \max \left\{ f_1(\boldsymbol{x}), f_2(\boldsymbol{x}) \right\}$$

is convex.

- (b) Illustrate the above in \mathbb{R}^1 by making a sketch with affine functions $f_1(x) = a_1x + b_1$ and $f_2(x) = a_2x + b_2$. You may choose a_1, b_1, a_2, b_2 to your liking.
- (c) Is it necessarily true that

 $f(\mathbf{x}) = \min \{f_1(\mathbf{x}), f_2(\mathbf{x})\}, \quad f_1, f_2 \text{ convex},$

is convex? Sketch an example in \mathbb{R}^1 that supports your argument.

- 7. Recall that we use \mathbb{S}^N_+ to denote the set of $N \times N$ matrices that are symmetric and whose eigenvalues are non-negative.
 - (a) Consider the function

$$f(\boldsymbol{X}) = \min_{\boldsymbol{v}: \|\boldsymbol{v}\|_2 = 1} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{v}.$$

Note that f maps any arbitrary (not necessarily symmetric) matrix to a single real number. Show that $f(\mathbf{X})$ is concave.

(b) Use your result from the previous part to show that \mathbb{S}^N_+ is a convex set.

1

(c) Find a set of convex functions $f_1(\mathbf{X}), \ldots, f_M(\mathbf{X})$ that map arbitrary $N \times N$ matrices to scalars $(f_m(\mathbf{X}) : \mathbb{R}^{N \times N} \to \mathbb{R})$ and scalars b_1, \ldots, b_M that specify \mathbb{S}^N_+ , meaning

$$\boldsymbol{X} \in \mathbb{S}^N_+ \quad \Leftrightarrow \quad f_m(\boldsymbol{X}) \leq b_m, \text{ for all } m = 1, \dots, M.$$

(Note that if f_m is linear, then f_m is both convex and concave, and so $f_m(\mathbf{X}) = b_m$ can be implemented using the pair of inequalities $f_m(\mathbf{X}) \leq b_m$ and $-f_m(\mathbf{X}) \leq -b_m$.) Note that there are multiple valid answers to this problem.

- 8. Compute the first and second derivatives of the following functions (remember the product and chain rules).
 - (a) $f(x) = ax^2 + bx + c$, where a, b, c are constants.
 - (b) $f(x) = \sum_{m=1}^{M} \log(1 + e^{-a_m x})$, where a_1, \ldots, a_M are constants.
- 9. Compute the gradient and Hessian matrix of the following functions. Note that \boldsymbol{x} is a vector in \mathbb{R}^N in all the problems below.
 - (a) $f(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{x} + c$, where \boldsymbol{A} is an $N \times N$ symmetric matrix (i.e., $\boldsymbol{A} = \boldsymbol{A}^T$), \boldsymbol{b} is an $N \times 1$ vector, and c is a scalar.
 - (b) $f(\boldsymbol{x}) = \sum_{m=1}^{M} \log(1 + e^{-\boldsymbol{a}_m^T \boldsymbol{x}})$, where $\boldsymbol{a}_1, \dots, \boldsymbol{a}_M$ are $N \times 1$ vectors.
- 10. Determine whether the following functions are convex, concave, or neither.
 - (a) $f(x) = e^{x^2}$ on dom $f = \mathbb{R}$.
 - (b) $f(x) = \log(1 + e^x)$ on dom $f = \mathbb{R}$.
 - (c) $f(x_1, x_2) = x_1 x_2$ on dom $f = \mathbb{R}^2_{++}$.
 - (d) $f(x_1, x_2) = 1/x_1x_2$ on dom $f = \mathbb{R}^2_{++}$.
 - (e) $f(x_1, x_2) = x_1/x_2$ on dom $f = \mathbb{R}^2_{++}$.
 - (f) $f(x_1, x_2) = x_1^2 / x_2$ on dom $f = \mathbb{R}^2_{++}$.