
Clustering so far…

Clustering methods such as    -means and GMMs use a spherical or elliptical metric 

to form clusters

Does not work well when clusters are non-convex



Recall the approach of ISOMAP

• Conceptualize data as a graph

• Redefine distance to how long it takes to “walk” from one point in the graph to 

another

• Means that other data points that have been observed play an important role in 

computing the distance



Spectral clustering

Given the data                           , we begin by constructing a graph where:

• the     are the vertices of the graph

• the edges and their weights        are determined by how close together      and      

are in 

• the weights are collected into an matrix

The weights        with                correspond to edges in the graph, in which case we 

say      and      are adjacent

Note: we are considering an undirected graph, in which case we assume that      is 

symmetric



Similarity graphs

Some common choices for the graph structure of      include

Adjacency structure

• -nearest neighbors: connect     to its   -nearest neighbors

• -ball graph: connect     to any     within a radius of   

• complete graph: connect     to every other 

Edge weights

• constant:

• Gaussian:



We can see from the graph that it can naturally be separated into two components

This structure can be detected by examining the graph Lapalacian matrix

Example



Graph Laplacian

To define the graph Laplacian matrix, we first need

• the weighted degree of a node     is given by

• the degree matrix is the            matrix given by

With these in hand, we can define the graph Laplacian



Example

Consider the graph below, where each edge has unit weight



Example



Graph Laplacian intuition

If             contains values of a function (whose domain is the vertices of the 

graph), applying the graph Laplacian to    gives you something like the second 

derivative 

To see this, consider the linear graph:

Up to a scaling factor, this is precisely the finite difference approximation of the 

second derivative



Properties of

1. For any

2. is positive semidefinite.

3. satisfies              .  Thus                      , or equivalently,    is an eigenvector 

of     with eigenvalue 0. 

It turns out that the null space of     is key to recognizing how many connected 

components the graph has

In fact, the dimension of the null space of     is exactly the number of connected 

components



Let                                be a subset of the nodes in the graph and let       be the 

indicator vector:

We say that a subset of nodes     is connected if there is a path between every pair 

of nodes in

Fact. If a graph has    connected components                    , then

1. , and

2.

Connected components



Fully connected case

In other words, the indicator functions of the connected components (which are 

clearly linearly independent) form a basis for the null space of the graph Laplacian

For            we have                                

We already know that 

All that remains is to show that                        

Suppose that                       

This can only be zero if                              for every      and

which are connected by an edge

Since the graph is connected, this implies that 



General case

For           , we can order the nodes so that the weight matrix and graph 

Laplacian    are block diagonal

We can think of each component as its own fully connected subgraph, with      as 

the Laplacian for this subgraph and

1. for                      , and

2. If             , then we can write                             , and so is a 

basis for



Arbitrary null space basis

Let                       be a basis for the null space of

Let               be defined as

i.e.,       is the       row of  

Then 



Since                  is a basis for               , we have that for any other basis           

             , there must exist                                such that

Example



Implications for clustering

Of course, in a typical setting, the graph we build from the data will not be 

perfectly separated into distinct components

More typically, we can think of the graph Laplacian as

In this case, we estimate a basis for the null space of the “clean” matrix via the 

eigenspace corresponding to the    smallest eigenvalues

The     should cluster around    different values

Simply use    -means clustering!



Spectral clustering

1. Input

2. Construct graph and graph Laplacian   

3. Compute eigendecomposition of

Set                   to be the eigenvectors corresponding to the     smallest 

eigenvalues of

4. Apply    -means to the rows of    

Assign     to the same cluster as the       row of 



Example

Scatter plot of

rows of     

Resulting clustering



Remarks

The normalized graph Laplacian is

It is easy to check that we can substitute     for     and get another spectral 

clustering algorithm

It is usually preferable to use     because this accounts for the fact that some nodes 

are more highly connected than others

Selecting the optimal value of    typically boils down to looking for a jump in the 

sorted eigenvalues from “near zero” to “not near zero”

There are alternative derivations/interpretations of subspace clustering based on 

graph cuts and based on random walks



Density-based clustering

Yet another approach to clustering is built on the assumption that clusters can be 

defined by identifying areas of high density in the dataset 

Produces a clustering of data points which are in dense areas, but typically leaves 

some data points un-labeled



DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is 

probably the most popular density-based clustering algorithm

Divides the dataset into three categories of points

• Core points: points in dense regions

• Reachable points: points which are near a core point

• Outliers: everything left over

DBSCAN has two parameters (         and   ) which help quantify how dense a cluster 

needs to be

Note: Does not require a priori determination of the number of clusters



Core points and reachability

An     is a core point if there are at least          points in the set

                                  

– these points are said to be reachable from    

An     is reachable from     if there is a sequence of points satisfying

•               and

• each       must be directly reachable from

(all                      must be core points)

If     is a core point, then it forms a cluster together with all points (core and non-

core) that are reachable from   



Example



Remarks

• Clustering can be computed in a simple iterative fashion

– find a core point

– add its reachable points

– iterate until all points are either clustered or labeled as outliers

• Algorithm can lead to slightly different clusterings depending on the order in 

which the points are processed

– “border points” can sometimes be assigned to multiple clusters, depending on which 

one is grown first

• Can struggle with clusters of varying density

– see extensions, e.g., OPTICS



Hierarchical clustering

In practice, we might be interested in learning a hierarchical clustering, where 

clusters are nested inside larger clusters

There are two main approaches to hierarchical clustering

• Bottom-up: agglomerative clustering builds up a hierarchy by starting with a 

fine-grain clustering and merging clusters together

• Top-down: divisive clustering builds up a hierarchy by iteratively dividing 

existing clusters into smaller components



Agglomerative clustering

Initialize by defining each                   to be its own cluster

At each iteration compute evaluate some metric measuring how similar each 

possible pair of clusters are

Merge the most similar pair of clusters

Repeat until all clusters are merged



Cluster similarity metrics

Suppose that     and     represent the index sets for two clusters which are 

candidates for being merged

How can we measure how similar these two clusters are?

Some common choices include:

• nearest neighbor:

• farthest neighbor:

• average:



Example

dendrogram



Divisive clustering

Begin with the entire dataset belonging to a single cluster

At each iteration, need to

• select an existing cluster to divide

– can use a metric like within-cluster scatter

• divide the selected cluster into two child clusters

– e.g., using any clustering algorithm we have seen so far

Can be computationally demanding, and is somewhat less well studied than 

agglomerative clustering
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