
Clustering



Example



Formal definition

Suppose                                

The goal of clustering is to assign the data to disjoint subsets called clusters, so 

that points in the same cluster are more similar to each other than points in 

different clusters

A clustering can be represented by a cluster map, which is a function

where     is the number of clusters 



Choose     to minimize

where

Note that     is assumed fixed and known

           is sometimes called the “within-cluster scatter”

-means criterion



There is no known efficient search strategy for this space

Can be solved (exactly) in time  

Completely impractical unless both    and     are extremely small

• e.g.,                            already results in 

More formally, minimizing the    -means criterion is a combinatorial optimization 

problem (NP-hard)

Instead, we resort to an iterative, suboptimal algorithm

Minimizing the   -means criterion



Another look at    -means 

Recall that we want to find

Note that for fixed

Therefore, we can equivalently write



An iterative algorithm

This suggests an iterative algorithm

1. Given    , choose       to minimize  

2. Given      , choose     to minimize  



-means clustering algorithm

The solutions to each sub-problem are given by

1.  

2.   

Algorithm

Initialize

Repeat until clusters don’t change

–   

–    



Initialization

Traditionally, the algorithm is typically initialized by setting each       to be a 

random point in the dataset 

However, depending on the initialization, the algorithm can get stuck in a local 

minimum

One can avoid this by:

• repeating for several random initializations

• initialize by sequentially selecting random points in the dataset, but with a 

probability depending on how far the point is from the already selected        :    

   -means ++



Clusters are “nearest neighbor” regions or Vornoi cells defined with respect to the 

cluster means

Cluster boundaries are formed by the intersections of hyperplanes   

   -means will “fail” if clusters are nonconvex  

Cluster geometry



Remarks

• Algorithm originally developed at Bell Labs as an approach to vector 

quantization

• If we replace the      norm with the     norm in our function     

           , then

– the geometry of our Vornoi regions will change

– the “center” of each region is actually calculated via the median in each dimension

– results in -medians clustering



Model selection for    -means

How to choose     ?

Let                be the within-cluster scatter based on   clusters  

If the “right” number of clusters is     , we expect

• for             ,                                        will be large

• for             ,                                        will be small

This suggests choosing     to be near the “knee” of the curve



Another take on    -means

I have followed the standard development of the     -means clustering algorithm, 

but there is another way to view this algorithm…

as simply another instance of structured matrix factorization

where

and     has exactly one “1” per column (the rest being zero)



Beyond    -means clustering

In    -means clustering, by measuring the within-cluster scatter as

we are implicitly assuming that each cluster is roughly spherical in shape

This is probably unrealistic

But if we don’t even know what the clusters are

we definitely don’t know how they are shaped…



Clustering with Gaussian mixture models

One way to extend the basic idea behind    -means clustering to allow for more 

general cluster shapes is to assume 

• the clusters are elliptical

• each cluster can be modeled using a multivariate Gaussian density

• the full data set is modeled using a Gaussian mixture model (GMM)

We can then perform clustering based on a maximum likelihood estimation of the 

GMM



Gaussian mixture models

Recall the multivariate Gaussian density

where

A random variable     follows a Gaussian mixture model if its density has the form

where



Example

mixture

not a mixture



Simulating a GMM

Let                           be a discrete random variable such that

Generate     as follows:

1. Generate a realization   of  

2. Generate   

The density of     generated this way is



GMMs for clustering

The variable    is called a (hidden) state variable

We can imagine that every realization from a GMM is actually associated with a 

(hidden) realization of the state variable

In the context of clustering, our objective is to estimate the parameters of the 

GMM and  define clusters based on the estimated means/covariances

That is, we assume                                    and reduce clustering to a parameter 

estimation problem

Of course, we have to do all of this without observing the hidden states                  

associated with



MLE for a GMM

Now consider a GMM and assume that     is known

The likelihood function is

and the log likelihood is

There is (unfortunately) no known closed-form maximizer



Define the “indicator” variable

The complete data log-likelihood can be written as

MLE with “incomplete data”



Expectation-Maximization (EM)

The expectation-maximization (EM) algorithm is an iterative algorithm that 

produces a sequence                        of parameter estimates

E-step

Given       , compute the expected complete data log-likelihood:

In our case

where



Expectation-Maximization (EM)

M-step

Given the expected complete data log-likelihood, compute the maximum likelihood 

estimate

expected 

complete data

log-likelihood

estimate of

expectation

maximization



EM algorithm for GMMs

Initialize 

Repeat unit termination criterion satisfied

E-Step: Compute

M-Step: Compute



Initialization and termination

In general, the likelihood has many local maxima, so a good initialization of the 

algorithm is critical

A good initialization for EM in the case of GMM is

Possible termination criteria are to stop iterating when

or

a randomly selected 
(sampled without

replacement)

the sample covariance



Defining clusters

Recall that 

A reasonable “hard” assignment of points to clusters is given by

Alternatively, one may simply take             as a “soft” assignment that expresses 

the “affinity” of      for cluster



Example: Eruptions of “Old Faithful”



EM in general

Nothing in the EM algorithm as we have stated it is specific to GMMs

EM is actually an extremely general algorithm for computing ML/MAP estimators 

Applies whenever having knowledge of certain “hidden variables” renders an 

ML/MAP estimator tractable

See Statistical Analysis with Missing Data by Little and Rubin (2002) for an in-depth 

discussion of other applications



Convergence of EM

Theorem

For each

A proof based on Jensen’s inequality is available in Hastie, Tibshirani, and 

Friedman

The convergence rate is also of interest

It is typically linear, but with a rate that depends on the proportion of observed 

data



Connection to    -means

Consider a GMM where each                  for some fixed

The EM algorithm for computing the MLE of                and  is to iterate 

When             ,

so the algorithm reduces to    -means 
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