
Training neural networks

Our main tool for training neural networks is backpropagation (i.e., a clever

implementation of gradient descent)

However, the loss functions we are aiming to minimize are particularly challenging

• Nonconvex

– local minima

– saddle points

• vanishing gradients

– particularly at initial layers

• sensitive to initialization

Image Source: A. Amini et al. “Spatial Uncertainty Sampling for End-to-End Control”. NeurIPS Bayesian Deep Learning 2018

https://arxiv.org/pdf/1805.04829.pdf

Initialization

Classical rule of thumb: Initialize by setting

2010

Initialization

The classical rule of thumb was designed for a sigmoid/tanh nonlinearity

As we will soon see, modern architectures are more likely to use a “rectified linear

unit” or ReLU nonlinearity

“He” initialization:

Feature normalization

Feature normalization is a critical preprocessing step

Standard normalization: For each feature we compute

Architectural improvements

Can we change the structure of our network to address the “vanishing gradient”

problem?

• choose activation functions and a loss function that make optimization easier

• want to avoid situations where the gradient is tiny, but you are far from the true

solution

– “saturation”

Choice of hidden units

For hidden units in a deep architecture the most common choice is the rectified

linear unit (ReLU)

ReLUs use the activation function

Note that the derivative is (usually) very easy to calculate

Not differentiable at zero, but generalizations exist, or we can use “subgradient

descent”

AlexNet

2012 ImageNet Large Scale Visual Recognition Challenge

• AlexNet: Top-5 error rate @15.3% (next closest @ 26.2%!)

• ReLU was one of the key innovations

• Subsequent variations (e.g., He et al., 2015)

How many layers/units?

• Choosing the number of hidden layers and number of units in each layer is more

art than science

• In general, it seems to be better to have too many parameters rather than too

few, and rely on regularization to avoid overfitting

• Additional strategies to control overfitting include

– dropout

– early stopping

– dataset augmentation

Regularization

To avoid overfitting the data, regularization is, again, crucial

Choose to minimize

This encourages small (or zero) weights

Note that when the weights are small, the effect of the nonlinear functions

can go away

If we constrain all weights to be small, the entire network can approximately

reduce to a simple linear classifier

Encouraging small weights in the network reduces the effective number of degrees

of freedom

or

Noise injection and dropout

In 1995, Bishop showed that “noise injection” (adding noise to the training data) is

approximately equivalent to Tikhonov regularization

Dropout is a way to add noise into each layer

Set with prob and with prob

Early stopping

When running gradient descent, you would think that more iterations would always

be better…

Early stopping serves as another form of regularization

Number of iterations

Loss

Training set

Validation set

Dataset augmentation

Overfitting is fundamentally a problem of having too many parameters and not

enough data

In many application areas, it can be possible to generate more training data on

demand

For example, images can be

• translated

• rotated

• zoomed

• warped, occluded, and subjected to other distortions

without changing the correct class label

It may be possible to generate lots of extra training data…

Adversarial training

If you work at it, it is also possible to generate some rather strange training data…

This highlights some strange behavior, but also provides a way to generate

augmented data that can help make deep networks much more robust

Large-scale gradient descent

Some of the most impressive results achieved by deep architectures have been on

large-scale image datasets

Consider the ImageNet dataset

• 14 million images

• 1000 classes

Each gradient step is incredibly expensive…

• make each step faster

– stochastic gradient descent, minibatch, rely on parallelism

• try to take fewer steps

– use smarter optimization algorithms

Stochastic gradient descent

The best way to make gradient descent faster on large data sets is something we

have already seen…

Stochastic gradient descent

Estimate the gradient at each iteration by randomly sampling an element from the

training data

This might result in an increase in the total number of iterations required to

converge, but on big datasets simply computing the full gradient is

wasteful/impossible

gradient

descent

stochastic

gradient

descent

Minibatch

Vanilla stochastic gradient takes too many iterations and also fails to exploit the

full power of vectorization/parallelism in modern computational architectures

The standard approach when working with large datasets is to form minibatches

Stochastic gradient descent, but with a bigger subset of the data

Optimal size of minibatch will depend on problem and your computational

resources

Momentum

We have talked a lot about gradient descent, but there has been a lot of research

recently in other first-order variants that can often result in much faster

convergence

Heavy ball method

(Gradient descent with momentum)

Momentum term can cancel out “oscillations” in certain dimensions, resulting in

convergence in fewer iterations

See also Nesterov’s accelerated method

gradient update momentum

Adaptive stepsizes

Another problem that can occur in stochastic gradient descent is that the gradient

updates can be relatively sparse

If you have to wait a long time for an update, you want to make the most of it

In AdaGrad (2011), you have a separate stepsize for each parameter and set

The popular ADAM optimizer (2015) combines this idea with momentum

Structural constraints

In practice, another common strategy is to place constraints on the parameters

Force sets of parameters to be equal

This is the underlying idea of convolutional neural networks, where the linear

mapping to the hidden layers is of the form of a convolution

Weights can be modeled via circulant matrices

(same parameters for each row)

Convolutional neural networks

The neural net architecture you’ve most likely heard of in the news is the

convolutional neural network (CNN)

Makes the explicit assumption that the input is an image

Constrains the structure of the network in a sensible way to make learning the

weights scalable to high-resolution images

Main insight: Translation invariance

Convolutional layer

The weights we apply to raw pixels should be the same, no matter where the

object is located in the image

We begin by convolving the image with different filters

– filters are localized, the filter weights represent the parameters to be learned

The output of these filters are then passed through a ReLU

image

receptive

field

outputs of different filters

Pooling layer

The other key concept in CNNs is pooling (downsampling)

Given the output of a filter, we can downsample the output to produce a smaller

number of coefficients for the next layer

Most common choice is known as max pooling

Intuition: the precise location of a feature is not important

A CNN will typically have a pooling layer after each convolution layer

Full CNN

Yann LeCun (1998)

Note that as you go deeper and subsample more, there are more filters/feature

maps available

After a certain depth, the network simply consists of fully connected layers

Deep Learning: Theory

Overparameterization

It is common to have many more parameters in a deep neural network than

number of examples in the training set

How can this possibly avoid overfitting?

Regularization only tells part of the story

These networks do often achieve zero error on the training data, so they are

overfitting in at least some capacity

Double descent phenomenon

“Complexity” of hypothesis set

Error

Overfitting

Overfitting

Overfitting

Overfitting

Overfitting

“Benign overfitting”

Real example: Sinusoidal features

Real example: Sinusoidal features

	Slide 1: Training neural networks
	Slide 2: Initialization
	Slide 3: Initialization
	Slide 4: Feature normalization
	Slide 5: Architectural improvements
	Slide 6: Choice of hidden units
	Slide 7: AlexNet
	Slide 8: How many layers/units?
	Slide 9: Regularization
	Slide 10: Noise injection and dropout
	Slide 11: Early stopping
	Slide 12: Dataset augmentation
	Slide 13: Adversarial training
	Slide 14: Large-scale gradient descent
	Slide 15: Stochastic gradient descent
	Slide 16: Minibatch
	Slide 17: Momentum
	Slide 18: Adaptive stepsizes
	Slide 19: Structural constraints
	Slide 20: Convolutional neural networks
	Slide 21: Convolutional layer
	Slide 22: Pooling layer
	Slide 23: Full CNN
	Slide 24: Deep Learning: Theory
	Slide 25: Overparameterization
	Slide 26: Double descent phenomenon
	Slide 27: Overfitting
	Slide 28: Overfitting
	Slide 29: Overfitting
	Slide 30: Overfitting
	Slide 31: Overfitting
	Slide 32: “Benign overfitting”
	Slide 33: Real example: Sinusoidal features
	Slide 34: Real example: Sinusoidal features

