
Training neural networks

Our main tool for training neural networks is backpropagation (i.e., a clever 

implementation of gradient descent)

However, the loss functions we are aiming to minimize are particularly challenging

• Nonconvex

– local minima

– saddle points

• vanishing gradients

– particularly at initial layers

• sensitive to initialization

Image Source: A. Amini et al. “Spatial Uncertainty Sampling for End-to-End Control”. NeurIPS Bayesian Deep Learning 2018

https://arxiv.org/pdf/1805.04829.pdf


Initialization

Classical rule of thumb:  Initialize by setting

2010



Initialization

The classical rule of thumb was designed for a sigmoid/tanh nonlinearity

As we will soon see, modern architectures are more likely to use a “rectified linear 

unit” or ReLU nonlinearity

“He” initialization: 



Feature normalization

Feature normalization is a critical preprocessing step

Standard normalization: For each feature we compute 



Architectural improvements

Can we change the structure of our network to address the “vanishing gradient” 

problem?

• choose activation functions and a loss function that make optimization easier

• want to avoid situations where the gradient is tiny, but you are far from the true 

solution

– “saturation”



Choice of hidden units

For hidden units in a deep architecture the most common choice is the rectified 

linear unit (ReLU) 

ReLUs use the activation function

Note that the derivative is (usually) very easy to calculate

Not differentiable at zero, but generalizations exist, or we can use “subgradient 

descent”



AlexNet

2012 ImageNet Large Scale Visual Recognition Challenge

• AlexNet: Top-5 error rate @15.3% (next closest @ 26.2%!)

• ReLU was one of the key innovations

• Subsequent variations (e.g., He et al., 2015)



How many layers/units?

• Choosing the number of hidden layers and number of units in each layer is more 

art than science

• In general, it seems to be better to have too many parameters rather than too 

few, and rely on regularization to avoid overfitting

• Additional strategies to control overfitting include

– dropout

– early stopping

– dataset augmentation



Regularization

To avoid overfitting the data, regularization is, again, crucial

Choose    to minimize

This encourages small (or zero) weights

Note that when the weights are small, the effect of the nonlinear functions        

can go away

If we constrain all weights to be small, the entire network can approximately 

reduce to a simple linear classifier

Encouraging small weights in the network reduces the effective number of degrees 

of freedom

or



Noise injection and dropout

In 1995, Bishop showed that “noise injection” (adding noise to the training data) is 

approximately equivalent to Tikhonov regularization

Dropout is a way to add noise into each layer

Set                  with prob     and                     with prob



Early stopping

When running gradient descent, you would think that more iterations would always 

be better…

Early stopping serves as another form of regularization

Number of iterations

Loss

Training set

Validation set



Dataset augmentation

Overfitting is fundamentally a problem of having too many parameters and not 

enough data

In many application areas, it can be possible to generate more training data on 

demand

For example, images can be

• translated

• rotated

• zoomed

• warped, occluded, and subjected to other distortions

without changing the correct class label

It may be possible to generate lots of extra training data…



Adversarial training

If you work at it, it is also possible to generate some rather strange training data…

This highlights some strange behavior, but also provides a way to generate 

augmented data that can help make deep networks much more robust



Large-scale gradient descent

Some of the most impressive results achieved by deep architectures have been on 

large-scale image datasets

Consider the ImageNet dataset

• 14 million images

• 1000 classes

Each gradient step is incredibly expensive…

• make each step faster

– stochastic gradient descent, minibatch, rely on parallelism

• try to take fewer steps

– use smarter optimization algorithms



Stochastic gradient descent

The best way to make gradient descent faster on large data sets is something we 

have already seen…

Stochastic gradient descent

Estimate the gradient at each iteration by randomly sampling an element from the 

training data

This might result in an increase in the total number of iterations required to 

converge, but on big datasets simply computing the full gradient is 

wasteful/impossible

gradient

descent

stochastic

gradient

descent



Minibatch 

Vanilla stochastic gradient takes too many iterations and also fails to exploit the 

full power of vectorization/parallelism in modern computational architectures

The standard approach when working with large datasets is to form minibatches

Stochastic gradient descent, but with a bigger subset of the data

Optimal size of minibatch will depend on problem and your computational 

resources



Momentum

We have talked a lot about gradient descent, but there has been a lot of research 

recently in other first-order variants that can often result in much faster 

convergence

Heavy ball method

(Gradient descent with momentum)

Momentum term can cancel out “oscillations” in certain dimensions, resulting in 

convergence in fewer iterations

See also Nesterov’s accelerated method

gradient update momentum



Adaptive stepsizes

Another problem that can occur in stochastic gradient descent is that the gradient 

updates can be relatively sparse

If you have to wait a long time for an update, you want to make the most of it

In AdaGrad (2011), you have a separate stepsize for each parameter and set

The popular ADAM optimizer (2015) combines this idea with momentum



Structural constraints

In practice, another common strategy is to place constraints on the parameters

Force sets of parameters to be equal

This is the underlying idea of convolutional neural networks, where the linear 

mapping to the hidden layers is of the form of a convolution

Weights can be modeled via circulant matrices 

(same parameters for each row)



Convolutional neural networks

The neural net architecture you’ve most likely heard of in the news is the 

convolutional neural network (CNN)

Makes the explicit assumption that the input is an image

Constrains the structure of the network in a sensible way to make learning the 

weights scalable to high-resolution images

Main insight: Translation invariance



Convolutional layer

The weights we apply to raw pixels should be the same, no matter where the 

object is located in the image

We begin by convolving the image with       different filters

– filters are localized, the filter weights represent the parameters to be learned 
 

The output of these filters are then passed through a ReLU

image

receptive

field

outputs of different filters



Pooling layer

The other key concept in CNNs is pooling (downsampling)

Given the output of a filter, we can downsample the output to produce a smaller 

number of coefficients for the next layer

Most common choice is known as max pooling

Intuition: the precise location of a feature is not important

A CNN will typically have a pooling layer after each convolution layer



Full CNN

Yann LeCun (1998)

Note that as you go deeper and subsample more, there are more filters/feature 

maps available

After a certain depth, the network simply consists of fully connected layers



Deep Learning: Theory



Overparameterization

It is common to have many more parameters in a deep neural network than 

number of examples in the training set

How can this possibly avoid overfitting?

Regularization only tells part of the story

These networks do often achieve zero error on the training data, so they are 

overfitting in at least some capacity



Double descent phenomenon

“Complexity” of hypothesis set

Error



Overfitting



Overfitting



Overfitting



Overfitting



Overfitting



“Benign overfitting”



Real example: Sinusoidal features



Real example: Sinusoidal features
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