Training neural networks

Our main tool for training neural networks is backpropagation (i.e., a clever
implementation of gradient descent)

However, the loss functions we are aiming to minimize are particularly challenging

e Nonconvex
- local minima
- saddle points

e vanishing gradients
- particularly at initial layers

e sensitive to initialization

Image Source: A. Amini et al. “Spatial Uncertainty Sampling for End-to-End Control”. NeurlPS Bayesian Deep Learning 2018

https://arxiv.org/pdf/1805.04829.pdf

Initialization

Classical rule of thumb: Initialize by setting

o [1 1
w;;t ~ U q(—1)’ g(t=1)

2010

Understanding the difficulty of training deep feedforward neural networks

Xavier Glorot Yoshua Bengio
DIRO. Université de Montréal, Montréal, Québec, Canada

Abstract learning methods for a wide array of deep architectures,

including neural networks with many hidden layers (Vin-

Whereas before 2006 it appears that deep multi- Ct.BilL etal., 2()()8,1 md graphical models with many levels of
layer neural networks were not successfully hidden variables (Hinton et al., 2006), among others (Zhu

trained, since then several algorithms have been et al.,, 2009; Weston et al., 2008). Much attention has re-

Initialization

The classical rule of thumb was designed for a sigmoid/tanh nonlinearity

As we will soon see, modern architectures are more likely to use a “rectified linear
unit” or ReLU nonlinearity

“He” initialization: (0) 0
w;.” ~ N)
1] d—1)

Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification
Kaiming He Xiangyu Zhang Shaoging Ren Jian Sun

Microsoft Research

{kahe, v-xiangz, v-shren, jiansun } @microsoft.com

015

@ Abstract and the use of smaller strides [33, 24, 2, 25]). new non-
-0 linear activations [21, 20, 34, 19, 27, 9], and sophisti-
. J Rectified activation units (rectifiers) are essential for cated layer designs [29, 11]. On the other hand. bet-

state-of-the-art neural networks. In this work, we study ter generalization is achieved by effective regularization

Feature normalization

Feature normalization is a critical preprocessing step

Standard normalization: For each feature we compute

015

..]

Mar

o

v . Z zi[7]
—1

1=
n

n
2 _ 1

o° = (wilf] — p)?

n
1=1

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

Sergey loffe
Google Inc., sioffe@google.com

Abstract

Training Deep Neural Networks is complicated by the fact
that the distribution of each layer’s inputs changes during
training, as the parameters of the previous layers change.
This slows down the training by requiring lower learning
rates and careful parameter initialization, and makes it no-
toriously hard to train models with saturating nonlineari-
ties. We refer to this nhenomenon as internal rovariate

Christian Szegedy
Google Inc., szegedy(@google.com

Using mini-batches of examples, as opposed to one exam-
ple at a time, is helpful in several ways. First, the gradient
of the loss over a mini-batch is an estimate of the gradient
over the training set, whose quality improves as the batch
size increases. Second, computation over a batch can be
much more efficient than m computations for individual
examples, due to the parallelism afforded by the modern
computing platforms.

Wihila ctnnhactin aendiant ic cimeela and affactiva

Architectural improvements

Can we change the structure of our network to address the “vanishing gradient”
problem?

e choose activation functions and a loss function that make optimization easier

o want to avoid situations where the gradient is tiny, but you are far from the true
solution

- “saturation”

Choice of hidden units

For hidden units in a deep architecture the most common choice is the rectified
linear unit (RelLU)

ReLUs use the activation function ¢g(t) = max{0,t}

0

Note that the derivative is (usually) very easy to calculate

Not differentiable at zero, but generalizations exist, or we can use “subgradient
descent”

AlexNet

2012 ImageNet Large Scale Visual Recognition Challenge

o AlexNet: Top-5 error rate @15.3% (next closest @ 26.2%!)
e RelLU was one of the key innovations

e Subsequent variations (e.g., He et al., 2015)

g(t) = max{0,t} + amin{0,t}

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
krizfics.utoronto.ca i1lyalcs.utoronto.ca hintonfcs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The

How many layers/units?

e Choosing the number of hidden layers and number of units in each layer is more
art than science

e In general, it seems to be better to have too many parameters rather than too
few, and rely on regularization to avoid overfitting

o Additional strategies to control overfitting include
- dropout
- early stopping
- dataset augmentation

Regularization

To avoid overfitting the data, regularization is, again, crucial
Choose 6 to minimize

L(O) +Al6]3 or L(8) + X0
This encourages small (or zero) weights

Note that when the weights are small, the effect of the nonlinear functions
can go away ¢, h

If we constrain all weights to be small, the entire network can approximately
reduce to a simple linear classifier

Encouraging small weights in the network reduces the effective number of degrees
of freedom

Noise injection and dropout

In 1995, Bishop showed that “noise injection” (adding noise to the training data) is

approximately equivalent to Tikhonov regularization

Dropout is a way to add noise into each layer

Set a:’() — — O with prob p and a':’() — 1 = with prob 1 —

Journal of Machine Learning Research 15 (2014) 1929-1958 Submitted 11/13; Published 6/14

Dropout: A Simple Way to Prevent Neural Networks from

Overfitting
Nitish Srivastava NITISH@CS. TORONTO.EDU
Geoffrey Hinton HINTON@CS. TORONTO.EDU
Alex Krizhevsky KRIZ@CS. TORONTO.EDU
Ilya Sutskever ILYA@CS. TORONTO.EDU
Ruslan Salakhutdinov RSALAKHU@CS. TORONTO.EDU

Department of Computer Science
University of Toronto

10 Kings College Road, Rm 3302
Toronto, Ontario, M5S 3G4. Canada.

Early stopping
When running gradient descent, you would think that more iterations would always

be better...

A Validation set

Loss

Number of iterations

Early stopping serves as another form of regularization

Dataset augmentation

Overfitting is fundamentally a problem of having too many parameters and not
enough data

In many application areas, it can be possible to generate more training data on
demand

For example, images can be

e translated

e rotated

e zoomed

e warped, occluded, and subjected to other distortions
without changing the correct class label

It may be possible to generate lots of extra training data...

Adversarial training

If you work at it, it is also possible to generate some rather strange training data...

+.007 x

I.—

T sign(V,J(0.x,y))

esign(V,J(0.x.y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

This highlights some strange behavior, but also provides a way to generate
augmented data that can help make deep networks much more robust

Large-scale gradient descent

Some of the most impressive results achieved by deep architectures have been on
large-scale image datasets

Consider the ImageNet dataset =
e 14 million images '
« 1000 classes

Each gradient step is incredibly expensive...
e make each step faster

- stochastic gradient descent, minibatch, rely on parallelism
o try to take fewer steps

- use smarter optimization algorithms

Stochastic gradient descent

The best way to make gradient descent faster on large data sets is something we
have already seen...

Stochastic gradient descent

Estimate the gradient at each iteration by randomly sampling an element from the
training data

This might result in an increase in the total number of iterations required to
converge, but on big datasets simply computing the full gradient is
wasteful/impossible

((stochastic] (

gradient _ 0: (. . ((

descent &/ g(’,jrad1en;c -1 &
=y escent
I\ NN\

—E

Minibatch

Vanilla stochastic gradient takes too many iterations and also fails to exploit the
full power of vectorization/parallelism in modern computational architectures

The standard approach when working with large datasets is to form minibatches
Stochastic gradient descent, but with a bigger subset of the data

Optimal size of minibatch will depend on problem and your computational
resources

Momentum

We have talked a lot about gradient descent, but there has been a lot of research
recently in other first-order variants that can often result in much faster
convergence

Heavy ball method
(Gradient descent with momentum)

g(r+1) :lg(?“) _ ozTVL(Q(T)). _|_l5T(9(T) _ 9(?“—1)).
Y Y
gradient update momentum

Momentum term can cancel out “oscillations” in certain dimensions, resulting in
convergence in fewer iterations

See also Nesterov’s accelerated method

Adaptive stepsizes

Another problem that can occur in stochastic gradient descent is that the gradient
updates can be relatively sparse

If you have to wait a long time for an update, you want to make the most of it

In AdaGrad (2011), you have a separate stepsize for each parameter and set

Oy X

1
NG

The popular ADAM optimizer (2015) combines this idea with momentum

Structural constraints

In practice, another common strategy is to place constraints on the parameters

Force sets of parameters to be equal

This is the underlying idea of convolutional neural networks, where the linear
mapping to the hidden layers is of the form of a convolution

Weights can be modeled via circulant matrices
(same parameters for each row)

Convolutional neural networks

The neural net architecture you’ve most likely heard of in the news is the
convolutional neural network (CNN)

Makes the explicit assumption that the input is an image

Constrains the structure of the network in a sensible way to make learning the
weights scalable to high-resolution images

Main insight: Translation invariance

Convolutional layer

The weights we apply to raw pixels should be the same, no matter where the
object is located in the image

We begin by convolving the image with N1 different filters
- filters are localized, the filter weights represent the parameters to be learned

The output of these filters are then passed through a RelL.U

outputs of different filters
A

receptive .@E>@ OO00OOD
field

image

Pooling layer

The other key concept in CNNs is pooling (downsampling)

Given the output of a filter, we can downsample the output to produce a smaller
number of coefficients for the next layer

Most common choice is known as max pooling

- W B -
N = O O
N = ON
- O 00 W
(=1}
o0

Intuition: the precise location of a feature is not important

A CNN will typically have a pooling layer after each convolution layer

Full CNN

Yann LeCun (1998)

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT 6@28x28
S2: f. maps CS:layer . javer OUTPUT
120 84 y 10

a2 6@14x14 r
@ IT_I-rI_ I-rr

I
‘ Full conrlection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Note that as you go deeper and subsample more, there are more filters/feature
maps available

After a certain depth, the network simply consists of fully connected layers

Deep Learning: Theory

Overparameterization

It is common to have many more parameters in a deep neural network than
number of examples in the training set

How can this possibly avoid overfitting?
Regularization only tells part of the story

These networks do often achieve zero error on the training data, so they are
overfitting in at least some capacity

Double descent phenomenon

A
R(h")

Error

—>
“Complexity” of hypothesis set

Overfitting

1.5

-0.5

-1

-08 -06 -04 -02 0 0.2

Overfitting

1.5

-0.5

-1

-08 -06 -04 -02 0 0.2

Overfitting

1.5

-0.5

-1

-08 -06 -04 -02 0 0.2

0.4

0.6

0.8

Overfitting

1.5

-0.5

-1

-08 -06 -04 -02 0 0.2

0.4

0.6

0.8

Overfitting

15 T T T I T T T T T

_DF

-1 -08 -06 -04 -0.2 0 02 04 06 038 1

“Benign overfitting”

1.5

-0.5

-1

-08 -06 -04 -02 0 02 04 06

0.8

Real example: Sinusoidal features

1.2

¥ x % Observed noisy samples
s | eesssasaas Estimate
True mean

Real example: Sinusoidal features

¥ Observed noisy labels
¥ ; m g 4 bl Estimate _
i Eh : True mean

.......
.....

"o
-
.....

	Slide 1: Training neural networks
	Slide 2: Initialization
	Slide 3: Initialization
	Slide 4: Feature normalization
	Slide 5: Architectural improvements
	Slide 6: Choice of hidden units
	Slide 7: AlexNet
	Slide 8: How many layers/units?
	Slide 9: Regularization
	Slide 10: Noise injection and dropout
	Slide 11: Early stopping
	Slide 12: Dataset augmentation
	Slide 13: Adversarial training
	Slide 14: Large-scale gradient descent
	Slide 15: Stochastic gradient descent
	Slide 16: Minibatch
	Slide 17: Momentum
	Slide 18: Adaptive stepsizes
	Slide 19: Structural constraints
	Slide 20: Convolutional neural networks
	Slide 21: Convolutional layer
	Slide 22: Pooling layer
	Slide 23: Full CNN
	Slide 24: Deep Learning: Theory
	Slide 25: Overparameterization
	Slide 26: Double descent phenomenon
	Slide 27: Overfitting
	Slide 28: Overfitting
	Slide 29: Overfitting
	Slide 30: Overfitting
	Slide 31: Overfitting
	Slide 32: “Benign overfitting”
	Slide 33: Real example: Sinusoidal features
	Slide 34: Real example: Sinusoidal features

