
Ensemble methods in machine learning

• Bootstrap aggregating (bagging)

– train an ensemble of models based on randomly resampled versions of the training 

set, then take a majority vote

• Boosting

– iteratively build an ensemble by training each new model to emphasize the parts of 

the training set that the previous model struggled with

• Stacking

– train a learning algorithm to combine the predictions of other learning algorithms



Example

What if you used the output of two linear classifiers as the input to another linear 

classifier?



This is a particular example of a multi-layer neural network
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Neural networks

Formally, the output of this network can be expressed via

where        are fixed activation functions and                         are parameters to 

be learned from the data

Example

The previous example fits this model with              and



Typical neural networks

In general, learning the parameters for a neural network can be quite difficult

To make life easier, it is nice to choose        to be differentiable

A historically common choice for    is the logistic/sigmoid function

The choice of    depends somewhat on the application



Typical neural networks

The choice of    depends somewhat on the application

Regression (           )

Binary classification (                                     )

Multiclass classification (                                     )



Remarks

• Like SVMs and logistic regression, neural networks ultimately apply a linear 

classifier to a set of features

• Like SVMs, those features are nonlinear

• Unlike SVMs, those nonlinear features are learned

• Unfortunately, training involves nonconvex optimization

• Originally conceived as models for the brain

– nodes are neurons 

– edges are synapses

– if    is a step function, this represents a neuron “firing” when the total incoming 

signal exceeds a certain threshold

• Potentially lots of parameters

– possible red flag for generalization



Training neural networks

Given training data                                    , where               and              , we 

would like to estimate the parameters 



Training neural networks



Simplifying the notation

Note that we can always augment a “1” to our input data (increasing the 

dimension to           ) and constrain the       to also ensure that  

If we do this, we may omit       and      to arrive at the simpler formulation

Letting     denote the matrix having rows       and      the matrix having rows       , 

we can also write this as



Training neural networks

Given training data                                    , where               and              , we 

would like to estimate the parameters 

For simplicity, let

To emphasize the dependence of our network on the parameters    , we will write 

the output of the network when given input     as 

We would like to choose     to ensure that

We can quantify this by choosing a loss function which we will seek to minimize by 

picking     appropriately



Loss functions

Regression or binary classification

For     

or for vector-valued regression problems



Loss functions

General classification

In the case of classification where             , we can define the     as indicator 

vectors in       (e.g.,                                      )

In this case a natural loss function is

This is called the cross entropy

If we interpret the outputs of our neural network                as class conditional 

probabilities, this is computing the negative log-likelihood of     given the training 

data, and is hence a natural quantity to minimize



Nonconvex optimization

Because of the complex interactions between the parameters in    , these 

objective functions do not lead to convex optimization problems

A local minimum is not necessarily a global minimum

The best we can hope for is to try to find a local minimum, and hope that this gives 

us good performance in practice

local minimum

global minimum



Aside…

This is currently a very active area of research, but there is some preliminary 

evidence that the picture I just showed you is not really an accurate depiction of 

the nonconvexity that typically arises in practice

It may be the case that the picture really looks more like

Perhaps most/all local minima are equally good! 

(highly speculative…)



Gradient descent

Recall that in gradient descent we simply iteratively “roll downhill”

From        , step in the direction of the negative gradient

: “step size”



Multi-layer neural networks

This framework can easily be extended to networks with multiple hidden layers





Deep neural networks

To simplify things, we will use a slightly altered notation

Here           is a                       matrix and



Computing the gradient

Given a loss function    , to implement gradient descent we need to compute 

i.e., we need to compute          for every single

We could do this independently for each             , but this gets very slow as the 

network gets large

Backpropagation is a much more efficient strategy for computing the gradient 



The chain rule

Recall that 

Note that

All we need is        , which we will denote by  



Starting at the final layer

Let’s look at a concrete example

For our loss function, take                                   for a particular input      and 

desired scalar output 

Assume for simplicity that 



Backpropagation

Now consider



Backpropagation algorithm

Initialize all weights         at random

Until convergence (or deadline):

1. Pick an example input-output

2. Forward: Pass      through the network to compute all

3. Backward: Compute all

4. Update the weights:

5. Iterate

Return final weights 



Convergence speed

In backpropagation, each hidden unit passes and receives information to and from 

only those units to which it is connected

Much faster way to compute the gradient than a naïve approach

Lends itself naturally to parallel implementations

Gradient descent can still be pretty slow to converge…

Initialization and various “tricks” are very important!
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