
Ensemble methods in machine learning

• Bootstrap aggregating (bagging)

– train an ensemble of models based on randomly resampled versions of the training

set, then take a majority vote

• Boosting

– iteratively build an ensemble by training each new model to emphasize the parts of

the training set that the previous model struggled with

• Stacking

– train a learning algorithm to combine the predictions of other learning algorithms

Example

What if you used the output of two linear classifiers as the input to another linear

classifier?

This is a particular example of a multi-layer neural network

Neural networks

input

layer

hidden

layer
output

layer

Neural networks

Formally, the output of this network can be expressed via

where are fixed activation functions and are parameters to

be learned from the data

Example

The previous example fits this model with and

Typical neural networks

In general, learning the parameters for a neural network can be quite difficult

To make life easier, it is nice to choose to be differentiable

A historically common choice for is the logistic/sigmoid function

The choice of depends somewhat on the application

Typical neural networks

The choice of depends somewhat on the application

Regression ()

Binary classification ()

Multiclass classification ()

Remarks

• Like SVMs and logistic regression, neural networks ultimately apply a linear

classifier to a set of features

• Like SVMs, those features are nonlinear

• Unlike SVMs, those nonlinear features are learned

• Unfortunately, training involves nonconvex optimization

• Originally conceived as models for the brain

– nodes are neurons

– edges are synapses

– if is a step function, this represents a neuron “firing” when the total incoming

signal exceeds a certain threshold

• Potentially lots of parameters

– possible red flag for generalization

Training neural networks

Given training data , where and , we

would like to estimate the parameters

Training neural networks

Simplifying the notation

Note that we can always augment a “1” to our input data (increasing the

dimension to) and constrain the to also ensure that

If we do this, we may omit and to arrive at the simpler formulation

Letting denote the matrix having rows and the matrix having rows ,

we can also write this as

Training neural networks

Given training data , where and , we

would like to estimate the parameters

For simplicity, let

To emphasize the dependence of our network on the parameters , we will write

the output of the network when given input as

We would like to choose to ensure that

We can quantify this by choosing a loss function which we will seek to minimize by

picking appropriately

Loss functions

Regression or binary classification

For

or for vector-valued regression problems

Loss functions

General classification

In the case of classification where , we can define the as indicator

vectors in (e.g.,)

In this case a natural loss function is

This is called the cross entropy

If we interpret the outputs of our neural network as class conditional

probabilities, this is computing the negative log-likelihood of given the training

data, and is hence a natural quantity to minimize

Nonconvex optimization

Because of the complex interactions between the parameters in , these

objective functions do not lead to convex optimization problems

A local minimum is not necessarily a global minimum

The best we can hope for is to try to find a local minimum, and hope that this gives

us good performance in practice

local minimum

global minimum

Aside…

This is currently a very active area of research, but there is some preliminary

evidence that the picture I just showed you is not really an accurate depiction of

the nonconvexity that typically arises in practice

It may be the case that the picture really looks more like

Perhaps most/all local minima are equally good!

(highly speculative…)

Gradient descent

Recall that in gradient descent we simply iteratively “roll downhill”

From , step in the direction of the negative gradient

: “step size”

Multi-layer neural networks

This framework can easily be extended to networks with multiple hidden layers

Deep neural networks

To simplify things, we will use a slightly altered notation

Here is a matrix and

Computing the gradient

Given a loss function , to implement gradient descent we need to compute

i.e., we need to compute for every single

We could do this independently for each , but this gets very slow as the

network gets large

Backpropagation is a much more efficient strategy for computing the gradient

The chain rule

Recall that

Note that

All we need is , which we will denote by

Starting at the final layer

Let’s look at a concrete example

For our loss function, take for a particular input and

desired scalar output

Assume for simplicity that

Backpropagation

Now consider

Backpropagation algorithm

Initialize all weights at random

Until convergence (or deadline):

1. Pick an example input-output

2. Forward: Pass through the network to compute all

3. Backward: Compute all

4. Update the weights:

5. Iterate

Return final weights

Convergence speed

In backpropagation, each hidden unit passes and receives information to and from

only those units to which it is connected

Much faster way to compute the gradient than a naïve approach

Lends itself naturally to parallel implementations

Gradient descent can still be pretty slow to converge…

Initialization and various “tricks” are very important!

	Slide 1: Ensemble methods in machine learning
	Slide 2: Example
	Slide 3: Neural networks
	Slide 4: Neural networks
	Slide 5: Typical neural networks
	Slide 6: Typical neural networks
	Slide 7: Remarks
	Slide 8: Training neural networks
	Slide 9: Training neural networks
	Slide 10: Simplifying the notation
	Slide 11: Training neural networks
	Slide 12: Loss functions
	Slide 13: Loss functions
	Slide 14: Nonconvex optimization
	Slide 15: Aside…
	Slide 16: Gradient descent
	Slide 17: Multi-layer neural networks
	Slide 18
	Slide 19: Deep neural networks
	Slide 20: Computing the gradient
	Slide 21: The chain rule
	Slide 22: Starting at the final layer
	Slide 23: Backpropagation
	Slide 24: Backpropagation algorithm
	Slide 25: Convergence speed

