
Puzzle: Time-series forecasting

Suppose we wish to predict whether the price of a stock is going to go up or down

tomorrow

• Take history over a long period of time

• Normalize the time series to zero mean, unit variance

• Form all possible input-output pairs with

– input = previous 20 days of stock prices

– output = price movement on the 21st day

• Randomly split data into training and testing data

• Train on training data only, test on testing data only

Based on the test data, it looks like we can consistently predict the price

movement direction with accuracy ~52%

Are we going to be rich?

Decision trees

A decision tree is a method for classification/regression that aims to ask a few

relatively simple questions about an input and then predicts the

associated output

Decision trees are useful to a large degree because of their simplicity and

interpretability

The resulting output rule is something that can easily be inspected and interpreted

by hand… something that is not really the case with most algorithms

We will also see later that decision trees form a useful building block for other

more sophisticated algorithms

Hypothetical example

Suppose we are given a dataset where the are 7-dimensional feature vectors

with features

1. Undergraduate GPA (4.0 scale)

2. Quantitative GRE score (130-170)

3. Verbal GRE score (130-170)

4. Analytical Writing GRE score (0-6)

5. Undergraduate institution reputation (0-100)

6. Statement of purpose evaluation (0-100)

7. Letter of recommendation evaluation (0-100)

The labels for this dataset are:

Example decision tree

Y N

Y N Y N

Y N Y N

Y N Y N

Generalizations

Decision trees can be applied to regression where the labels at the “leaf nodes”

are real-valued (or real-valued functions)

Other generalizations include:

• splits that involve more than one feature

• Splits involving more than two outcomes

Y N

Binary decision trees

Using multiple features and allowing splits with more than two outcomes generally

increases the risk of overfitting

We will restrict our attention to binary, single-feature splits

In this case, every (binary) decision tree is associated with a partition of the

feature space that looks something like this example in

Terminology

• The elements of the partition are called cells

• Recall that a graph is a collection of nodes or vertices, some of which are

joined by edges

• The degree of a vertex is the number of edges incident on that vertex

• A tree is a connected graph with no cycles

When is a tree not a tree?

Rooted binary trees

A rooted binary tree is a tree where

– one vertex, called the root, has degree 2

– and all other vertices have degree 1 or 3

• vertices with degree 1 are called leaf or terminal vertices

• vertices with degree 2 or 3 are called internal vertices

More terminology

• The depth of a vertex is the length to the root

• The parent of a vertex is the neighbor with depth one less

• Two vertices are siblings if they have the same parent

• A subtree is a subgraph that is also a tree

• A rooted binary subtree is a subtree that contains the root and is such that if

any non-root vertex is in the subtree, so is its sibling

A binary decision tree is a rooted binary tree where each internal vertex is

associated with a binary classifier, and each leaf with a label

Learning decision trees

Let denote the set of all binary decision trees

Given a dataset , it might be tempting to pose the learning

problem as an optimization problem of the form

where is an appropriate loss function, e.g.,

• 0/1 loss for classification

• squared error loss for regression

Unfortunately, this will lead to massive overfitting

If we grow the tree deep enough, we can usually fit the training data perfectly!

Penalized empirical risk minimization

Since deep/complex decision trees tend to overfit, we would like to avoid such

trees

A natural way to quantify the complexity of a tree is the number of leaf nodes,

which we denote by

Note that if , we would very likely be overfitting

The penalized ERM approach is to consider the optimization problem

Learning a tree in practice

Unfortunately, this optimization problem is intractable

A two-stage procedure is typically employed in practice

1. Grow a very large tree in a greedy fashion

2. Prune by solving

where is the set of all decision trees based on rooted binary subtrees of

Growing a decision tree

The construction of follows a simple greedy (looking just one step ahead)

strategy

1. Start at the root vertex (i.e., the entire feature space)

2. Decide whether to stop growing tree at current vertex

– If yes, assign a label and stop

3. If no, consider all possible ways to split the data in the cell corresponding to

the current vertex, and select the best one

4. For each branch of the split, create a new vertex and go to step 2

Implementation

To implement this strategy, we need:

• A list of possible splits

When considering splits based on a single real-valued feature, splits have the

form

Since there are only data points, only at most values of need to be

considered for each

For discrete or categorical features, other simple splits can be used, such as

Implementation

To implement this strategy, we need:

• A labeling rule

For classification, we can just assign labels by majority vote over data in the cell

corresponding to the current vertex

For regression, we can just take the average of the in the cell for a piecewise

constant approximation

(or least squares fit for piecewise polynomial or other approximation)

Implementation

To implement this strategy, we need:

• A rule for stopping splitting

The most common strategy is to just split until each leaf vertex contains a single

data point

• A rule for selecting the best split

This is the hard part!

Split selection

Let’s focus on binary classification

Suppose is a leaf vertex at some stage in the growing process

We can think of as also defining a cell in the feature space, allowing us to

consider

Intuitively, a good split of will lead to children that are more homogenous or

pure than

To define this, we will define a notion of impurity

Impurity measure

Assume the class labels are

Let

Note that defines a probability distribution on the labels (i.e., on

the probability of getting each label on a randomly selected point in)

An impurity measure is a function such that

• , with if and only if consists of a single class

• a larger value of indicates that the distribution defined by is

closer to the uniform distribution

Examples

Entropy:

Gini index:

Misclassification rate:

entropy

Gini index

misclassification

rate

Using the impurity measure

To select the best split, we aim to maximize the decrease in impurity

Let and be two children of

Define

The decrease in impurity is

When is entropy, this is called the information gain

Pruning

Pruning the model involves solving the optimization problem:

 is additive in the following sense:

For any tree , let be the partition of the tree corresponding

to the children of the root vertex

Then

Applying this idea recursively suggests a natural algorithm of weakest link

pruning. One can also attack this via an efficient “bottom up” dynamic

programming approach.

Why grow then prune?

Why should we go to the trouble of growing the tree and then pruning?

A simpler approach would be to just grow the tree and then stop when the

decrease in impurity is neglibible

Answer: Ancillary splits

These are splits that have no value by themselves, but enable useful splits later on

Remarks

Advantages

• interpretable

• rapid evaluation

• easily handles

– categorical/mixed data

– missing data

– multiple classes

Disadvantages

• unstable: slight perturbations of training data can drastically alter the learned

tree

• jagged decision boundaries

Ensemble methods

Ensemble methods address both of these deficiencies in decision trees as well as

other algorithms

The first step is to generate a number of classifiers (all using the same

dataset) using some method that typically involves some degree of randomness

The second step is to combine these into a single classifier

Even if none of the individual classifiers are particularly good, the combined result

can far outperform any of the individual classifiers and can be surprisingly

effective

“The wisdom of the crowds”

Sir Francis Galton (1822-1911)

– cousin of Charles Darwin

– statistician (introduced correlation and standard deviation)

– father of eugenics… wary of democracy and distrustful of “the mob”

How much does this ox weigh?

If we collect hundreds of uneducated farmers (with no particular expertise in

weighing oxen), how well will they do?

Mean of the guesses: 1,197 pounds

Actual weight: 1,198 pounds

An example in classification

Suppose that the feature space is and that the data looks like:

In this scenario, the Bayes risk is zero…

But the risk of certain simple classifiers can still be large

Histogram classifiers

Suppose that we are using histogram classifiers

In particular, we are using classifiers based on a regular partition of into 9

squares

Label of each cell determined by majority vote

This classifier will not perform very well for the given distribution (or indeed, most

distributions)

The risk of this

classifier is:

You can easily imagine that binary decision trees would have similar trouble with

this example

However, we will see that with an appropriate ensemble method, we can make

this classifier much more effective

Histogram classifiers are pretty bad!

Randomly shifted histogram classifiers

Suppose that we generate uniformly at random

Then shift the partition by

Ensemble histogram classifier

Generate as independent randomly shifted histogram classifiers and

take majority vote

Example:

Bagging

Another way to introduce some randomness is via bagging

Bagging is short for bootstrap aggregation

Given a training sample of size , for let be a list of size

obtained by sampling from with replacement

Recall that is called a bootstrap sample

Suppose we have a fixed learning algorithm

Let be the classifier we obtain by applying this learning algorithm to

The bagging classifier is just the majority vote over

Random forests

A random forest is an ensemble of decision trees where each decision tree is

(independently) randomized in some fashion

Bagging with decision trees is a simple example of a random forest

In the specific context of decision trees, bagging has one pretty big drawback

• bootstrap samples are highly correlated

• as a result, the different decision trees tend to select the same features as most

informative

• this leads to partitions that tend to be highly correlated

• we would rather have partitions that are more “independent”

Random feature selection

One way to achieve this is to also incorporate random feature selection

– generate an classifiers by choosing random subsets of features and designing decision

trees on just those features

– can be combined with bagging

Random features lead to less correlated partitions, translating to a reduced

variance for the ensemble prediction

Rule of thumb: use random features

Random forests are possibly the best “off-the-shelf” method for classification

Approach also extends to regression

	Slide 1: Puzzle: Time-series forecasting
	Slide 2: Decision trees
	Slide 3: Hypothetical example
	Slide 4: Example decision tree
	Slide 5: Generalizations
	Slide 6: Binary decision trees
	Slide 7: Terminology
	Slide 8: When is a tree not a tree?
	Slide 9: Rooted binary trees
	Slide 10: More terminology
	Slide 11: Learning decision trees
	Slide 12: Penalized empirical risk minimization
	Slide 13: Learning a tree in practice
	Slide 14: Growing a decision tree
	Slide 15: Implementation
	Slide 16: Implementation
	Slide 17: Implementation
	Slide 18: Split selection
	Slide 19: Impurity measure
	Slide 20: Examples
	Slide 21: Using the impurity measure
	Slide 22: Pruning
	Slide 23: Why grow then prune?
	Slide 24: Remarks
	Slide 25: Ensemble methods
	Slide 26: “The wisdom of the crowds”
	Slide 27: An example in classification
	Slide 28: Histogram classifiers
	Slide 29: Histogram classifiers are pretty bad!
	Slide 30: Randomly shifted histogram classifiers
	Slide 31: Ensemble histogram classifier
	Slide 32: Bagging
	Slide 33: Random forests
	Slide 34: Random feature selection

