
Puzzle: Time-series forecasting

Suppose we wish to predict whether the price of a stock is going to go up or down 

tomorrow

• Take history over a long period of time

• Normalize the time series to zero mean, unit variance

• Form all possible input-output pairs with

– input = previous 20 days of stock prices

– output = price movement on the 21st day

• Randomly split data into training and testing data

• Train on training data only, test on testing data only

Based on the test data, it looks like we can consistently predict the price 

movement direction with accuracy ~52%

Are we going to be rich?



Decision trees

A decision tree is a method for classification/regression that aims to ask a few 

relatively simple questions about an input and then predicts the 

associated output

Decision trees are useful to a large degree because of their simplicity and 

interpretability

The resulting output rule is something that can easily be inspected and interpreted 

by hand… something that is not really the case with most algorithms

We will also see later that decision trees form a useful building block for other 

more sophisticated algorithms



Hypothetical example

Suppose we are given a dataset where the     are 7-dimensional feature vectors 

with features 

1. Undergraduate GPA (4.0 scale)

2. Quantitative GRE score (130-170)

3. Verbal GRE score (130-170)

4. Analytical Writing GRE score (0-6)

5. Undergraduate institution reputation (0-100)

6. Statement of purpose evaluation (0-100)

7. Letter of recommendation evaluation (0-100)

The labels for this dataset are:



Example decision tree 

Y N

Y N Y N

Y N Y N

Y N Y N



Generalizations

Decision trees can be applied to regression where the labels at the “leaf nodes” 

are real-valued (or real-valued functions)

Other generalizations include:

• splits that involve more than one feature

• Splits involving more than two outcomes

Y N



Binary decision trees

Using multiple features and allowing splits with more than two outcomes generally 

increases the risk of overfitting

We will restrict our attention to binary, single-feature splits

In this case, every (binary) decision tree is associated with a partition of the 

feature space that looks something like this example in   



Terminology

• The elements of the partition are called cells

• Recall that a graph is a collection of nodes or vertices, some of which are 

joined by edges

• The degree of a vertex is the number of edges incident on that vertex

• A tree is a connected graph with no cycles



When is a tree not a tree?



Rooted binary trees

A rooted binary tree is a tree where 

– one vertex, called the root, has degree 2

– and all other vertices have degree 1 or 3

• vertices with degree 1 are called leaf or terminal vertices

• vertices with degree 2 or 3 are called internal vertices



More terminology

• The depth of a vertex is the length to the root

• The parent of a vertex is the neighbor with depth one less

• Two vertices are siblings if they have the same parent

• A subtree is a subgraph that is also a tree

• A rooted binary subtree is a subtree that contains the root and is such that if 

any non-root vertex is in the subtree, so is its sibling

A binary decision tree is a rooted binary tree where each internal vertex is 

associated with a binary classifier, and each leaf with a label



Learning decision trees

Let      denote the set of all binary decision trees

Given a dataset                                   , it might be tempting to pose the learning 

problem as an optimization problem of the form

where     is an appropriate loss function, e.g.,

• 0/1 loss for classification

• squared error loss for regression

Unfortunately, this will lead to massive overfitting

If we grow the tree deep enough, we can usually fit the training data perfectly!



Penalized empirical risk minimization

Since deep/complex decision trees tend to overfit, we would like to avoid such 

trees

A natural way to quantify the complexity of a tree is the number of leaf nodes, 

which we denote by

Note that if              , we would very likely be overfitting

The penalized ERM approach is to consider the optimization problem



Learning a tree in practice

Unfortunately, this optimization problem is intractable

A two-stage procedure is typically employed in practice

1. Grow a very large tree      in a greedy fashion

2. Prune      by solving

where      is the set of all decision trees based on rooted binary subtrees of 



Growing a decision tree

The construction of      follows a simple greedy (looking just one step ahead) 

strategy

1. Start at the root vertex (i.e., the entire feature space)

2. Decide whether to stop growing tree at current vertex

– If yes, assign a label and stop

3. If no, consider all possible ways to split the data in the cell corresponding to 

the current vertex, and select the best one

4. For each branch of the split, create a new vertex and go to step 2



Implementation

To implement this strategy, we need:

• A list of possible splits

When considering splits based on a single real-valued feature, splits have the 

form 

Since there are only     data points, only at most          values of    need to be 

considered for each    

For discrete or categorical features, other simple splits can be used, such as



Implementation

To implement this strategy, we need:

• A labeling rule

For classification, we can just assign labels by majority vote over data in the cell 

corresponding to the current vertex

For regression, we can just take the average of the     in the cell for a piecewise 

constant approximation

(or least squares fit for piecewise polynomial or other approximation)



Implementation

To implement this strategy, we need:

• A rule for stopping splitting

The most common strategy is to just split until each leaf vertex contains a single 

data point

• A rule for selecting the best split

This is the hard part!



Split selection

Let’s focus on binary classification

Suppose      is a leaf vertex at some stage in the growing process

We can think of      as also defining a cell in the feature space, allowing us to 

consider

Intuitively, a good split of     will lead to children that are more homogenous or 

pure than 

To define this, we will define a notion of impurity



Impurity measure

Assume the class labels are

Let 

Note that                       defines a probability distribution on the labels (i.e., on 

the probability of getting each label on a randomly selected point in    )

An impurity measure is a function          such that

•                , with                   if and only if      consists of a single class

• a larger value of          indicates that the distribution defined by                      is 

closer to the uniform distribution 



Examples

Entropy:

Gini index:

Misclassification rate:

entropy

Gini index

misclassification

rate



Using the impurity measure

To select the best split, we aim to maximize the decrease in impurity

Let      and      be two children of   

Define

The decrease in impurity is

When    is entropy, this is called the information gain



Pruning

Pruning the model involves solving the optimization problem:

         is additive in the following sense:

For any tree    , let                               be the partition of the tree corresponding 

to the children of the root vertex

Then        

Applying this idea recursively suggests a natural algorithm of weakest link 

pruning. One can also attack this via an efficient “bottom up” dynamic 

programming approach.



Why grow then prune?

Why should we go to the trouble of growing the tree and then pruning?

A simpler approach would be to just grow the tree and then stop when the 

decrease in impurity is neglibible

Answer: Ancillary splits

These are splits that have no value by themselves, but enable useful splits later on



Remarks

Advantages 

• interpretable

• rapid evaluation

• easily handles

– categorical/mixed data

– missing data

– multiple classes 

Disadvantages

• unstable: slight perturbations of training data can drastically alter the learned 

tree

• jagged decision boundaries



Ensemble methods

Ensemble methods address both of these deficiencies in decision trees as well as 

other algorithms

The first step is to generate a number of classifiers                   (all using the same 

dataset) using some method that typically involves some degree of randomness

The second step is to combine these into a single classifier 

Even if none of the individual classifiers are particularly good, the combined result 

can far outperform any of the individual classifiers and can be surprisingly 

effective



“The wisdom of the crowds”

Sir Francis Galton (1822-1911)

– cousin of Charles Darwin

– statistician (introduced correlation and standard deviation)

– father of eugenics… wary of democracy and distrustful of  “the mob”

How much does this ox weigh?

If we collect hundreds of uneducated farmers (with no particular expertise in 

weighing oxen), how well will they do?

Mean of the guesses: 1,197 pounds

Actual weight: 1,198 pounds



An example in classification

Suppose that the feature space is            and that the data looks like:

In this scenario, the Bayes risk is zero… 

But the risk of certain simple classifiers can still be large



Histogram classifiers

Suppose that we are using histogram classifiers

In particular, we are using classifiers based on a regular partition of            into 9 

squares

Label of each cell determined by majority vote



This classifier will not perform very well for the given distribution (or indeed, most 

distributions)

The risk of this

classifier is:

You can easily imagine that binary decision trees would have similar trouble with 

this example

However, we will see that with an appropriate ensemble method, we can make 

this classifier much more effective

Histogram classifiers are pretty bad!



Randomly shifted histogram classifiers

Suppose that we generate                       uniformly at random

Then shift the partition by 



Ensemble histogram classifier

Generate                   as independent randomly shifted histogram classifiers and 

take majority vote

Example: 



Bagging

Another way to introduce some randomness is via bagging

Bagging is short for bootstrap aggregation

Given a training sample of size    , for                        let      be a list of size 

obtained by sampling from with replacement

Recall that is called a bootstrap sample

Suppose we have a fixed learning algorithm

Let      be the classifier we obtain by applying this learning algorithm to 

  

The bagging classifier is just the majority vote over



Random forests

A random forest is an ensemble of decision trees where each decision tree is 

(independently) randomized in some fashion

Bagging with decision trees is a simple example of a random forest

In the specific context of decision trees, bagging has one pretty big drawback

• bootstrap samples are highly correlated

• as a result, the different decision trees tend to select the same features as most 

informative

• this leads to partitions that tend to be highly correlated

• we would rather have partitions that are more “independent” 



Random feature selection

One way to achieve this is to also incorporate random feature selection

– generate an classifiers by choosing random subsets of features and designing decision 

trees on just those features

– can be combined with bagging

Random features lead to less correlated partitions, translating to a reduced 

variance for the ensemble prediction

Rule of thumb: use        random features

Random forests are possibly the best “off-the-shelf” method for classification

Approach also extends to regression
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