
Structured matrix factorizations

An extremely large variety of interesting and important problems in machine

learning can be formulated as:

Given a matrix , find a matrix and an matrix such

that

under the constraints that and have some kind of structure

Examples we have seen so far have included PCA, MDS, and extensions like kernel

PCA, Isomap, LLE, etc.

In these examples, the only structure we have enforced has been orthonormality –

this is not always quite enough…

Example: Eigenfaces

Fill up the columns of with vectorized images of faces

Given thousands of such faces, we can still approximate very well as a low-rank

matrix (e.g., rank 200)

Given a low-rank factorization , the columns of represent a small

number of “eigenfaces” which we can use to build up any face

Example: Eigenfaces

Example: Topic modeling

Topic modeling refers to a broad class of algorithms that to automatically sort

documents into groups which share a common theme/topic based on their

semantic content

The input to these algorithms is the familiar “bag of words” representation, i.e.,

the matrix with entries

The rows of tend to be correlated, so we can typically approximate as

a low-rank matrix

This expresses each document as a combination of the columns of , each of

which ideally each represent a coherent “topic”

of times word appeared

in document

Non-negative matrix factorization

In both of the two previous cases, it is actually very hard to interpret what the

latent factors tell us about the data, because we are not enforcing the proper

structure on

If we instead constrain to have non-negative entries, we get different (and

perhaps more interesting) results:

The idea behind this is that by forcing the factors to be positive, we must build up

only by adding components (instead of relying on potentially complicated

cancellations)

This will hopefully make it easier to interpret the results

Solving the NNMF problem

Solving this problem is much more involved than the unconstrained case

– no closed form solution (the SVD does not help us)

– non-convex optimization problem

However, notice that if we fix , then the program

is column separable, i.e., for each we can separately solve

NNMF and alternating minimization

This is a quadratic program that is easily solvable using off-the-shelf software

The same is true if we fix and optimize over

Alternating minimization algorithm

Input: together with initial guess for

1. Compute treating as fixed

2. Compute treating

3. Iterate until convergence

Example: NNMF for faces

Example: NNMF for topic modeling

Dictionary learning

In dictionary learning, our goal is again to form a factorization of the form

, but now with the structure that is sparse

The idea is that we are searching for a basis or dictionary such that every

can be expressed as a weighted combination of just a few columns of

Sparsity

nonzero
entries

samples

large

Fourier

coefficients

Sparsity

nonzero
entries

pixels
large

wavelet

coefficients

Sparsity as a nonlinear model

Sparse models are fundamentally different than subspace models like PCA

We may use only coefficients for each , but which coefficients changes

depending on

Sparsity is really a union of subspaces model

Sparse approximation

Before we discuss dictionary learning, let us first consider the problem of finding a

sparse representation for a given

One way to pose this problem is via the optimization problem

If is orthonormal, then

In this case, solving the problem is easy

Simply compute

and set

Sparse approximation

In the more general setting where is not orthonormal, this problem is not so

easy to solve

NP-hard in general

This is important in practice, since typically one can obtain that do a much

better job of “sparsifying” our data if we allow them to be overcomplete (more

columns than rows)

However, there are some good heuristics which also have strong theoretical

justification when satisfies some nice regularity conditions

LASSO:

Greedy algorithms: orthogonal matching pursuit

Dictionary learning formulation

Getting back to dictionary learning, the problem we would like to solve can be

stated as the optimization problem

Just as with NNMF, this is nonconvex and extremely difficult to solve exactly

However, we can take the same approach as before and consider an alternating

minimization strategy to tackling this:

• fix and optimize over

• then, fix and optimize over

• repeat until convergence

K-SVD algorithm

There are many variants of this approach, but perhaps the most popular is the K-

SVD algorithm

Input: , , desired sparsity level

1. With fixed, solve a series of sparse approximation problems using

orthogonal matching pursuit to obtain

2. With fixed, solve the optimization problem

3. Iterate until convergence

The optimization problem in step 2 can be broken into independent problems for

each column of , and can be solved by taking an SVD

Example: Natural images

The first people to look at dictionary learning in this way were Olshausen and Field

in a seminal 1996 paper

They were studying human vision, and wondered if it might be the case that the

human visual system is actually trained to produce sparse representations of

natural images

They formed a large collection of patches of images from natural scenes

Compared PCA to dictionary learning

Example: Natural images

PCA

Learned dictionary

very similar to DCT

actually matches

experimental data

for neural responses

in human/animal

visual systems

Example: Natural images

The K-SVD algorithm provides similar results:

Example image patches

K-SVD dictionary Haar wavelets DCT a

Missing and corrupted data

Let denote a “data matrix”

Recall that we can compute the principal components simply by computing the

singular value decomposition

The principal eigenvectors are the first columns of

The inherent assumption in PCA is that is (at least approximately) low rank

– i.e., most of the singular values are close to zero

What happens if some of the entries in are missing?

PCA with missing data

Given a set of indices, we get to observe , and we would like to

recover

– also known as matrix completion

– can also be extended to the case where some of the entries have been corrupted

(i.e., the set is unknown) under the name of robust PCA

Outliers

What happens if there are outliers in our data set?

PCA can be extremely sensitive to outliers/corruptions

Modeling outliers

In the presence of outliers, our data matrix is no longer low-rank because some

of the entries have been corrupted

low-rank corruptions

Robust PCA

The problem of robust PCA boils down to a separation problem

Given , determine (and hence)

Is this possible?

Example

If I tell you , what are and ?

We need to make some assumptions on and to make this problem tractable

• is low-rank (i.e., PCA even makes sense)

• is sparse (only a few entries are corrupted)

How to perform separation/recovery?

Matrix completion

Robust PCA

What’s the problem with these approaches?

– nonconvex, intractable, NP hard, etc.

There are alternating minimization approaches to both, or…

Convex relaxation

We have already seen that an effective proxy for that encourages sparsity is

the “convex relaxation”

What about a convex relaxation of ?

Observe that if we let denote the vector containing the singular values of ,

then

What if we replace with ?

It turns out that is indeed a convex function, and hence something we can

potentially optimize efficiently

– typically called the nuclear norm or Shatten 1-norm

– we can write

Convex programs for separation/recovery

Matrix completion

Robust PCA

Application: Collaborative filtering

The “Netflix Problem”

Rank 1 model:

Rank 2 model:

how much user likes movie i j

how much user likes romantic movies i

amount of romance in movie j

how much user likes zombie movies i

amount of zombies in movie j

More generally, we might have

Low-rank models are commonly applied to all kinds of “response” data

– surveys (census)

– standardized tests

– market research

If we have lots of questions and lots of participants

– we might not be able to ask all participants all possible questions

– we might need to deal with malicious responses

Application: Response data

response from person to questioni j

Application: Multidimensional scaling

Suppose that represents the pairwise distances between a set of objects, i.e.,

Recall from before that in this case

where is the dimension of the

If we have a large number of objects, we may not be able to observe/measure all

possible pairwise distances

If these distances are calculated from similarity judgments by people, we may

have outliers/corruptions

Application: Removing face illumination

[Candès et al., 2009]

Application: Background subtraction

[Candès et al., 2009]

When does it work?

In general, we cannot always guarantee that we can solve the separation/recovery

problems

Examples where separation/recovery might be impossible:

• too many of the entries are corrupted

– in this case our corruptions are not really sparse

• we do not observe enough of the entries

– e.g., we do not even observe some rows/columns

• the low-rank portion of the matrix is also sparse

– we will not be able to separate it from sparse corruptions

– we might not observe any of the relevant entries

How much data do we need?

Consider the matrix completion problem

To recover a matrix with rank , how many observations do we expect to need?

If is , then there are

degrees of freedom

We can reasonably expect that we will need to have

In fact, we need a little bit more:

Incoherence

We also need to avoid the case where is sparse

We will assume that satisfies the incoherence condition:

If , the incoherence condition with parameter states that

Matrix completion

Theorem

Suppose that has rank and satisfies the incoherence condition. If we observe

entries of sampled uniformly at random, then as long as

we will recover exactly with high probability

See papers by Recht, Candès, Tao, and many others

Robust PCA

Theorem

Suppose that where satisfies the incoherence property,

and the support set of is chosen uniformly at random from all sets of size

.

Then if we set we achieve exact separation of and with high

probability.

See papers by Candès, Li, Ma, and Wright, and others

	Slide 1: Structured matrix factorizations
	Slide 2: Example: Eigenfaces
	Slide 3: Example: Eigenfaces
	Slide 4: Example: Topic modeling
	Slide 5: Non-negative matrix factorization
	Slide 6: Solving the NNMF problem
	Slide 7: NNMF and alternating minimization
	Slide 8: Example: NNMF for faces
	Slide 9: Example: NNMF for topic modeling
	Slide 10: Dictionary learning
	Slide 11: Sparsity
	Slide 12: Sparsity
	Slide 13: Sparsity as a nonlinear model
	Slide 14: Sparse approximation
	Slide 15: Sparse approximation
	Slide 16: Dictionary learning formulation
	Slide 17: K-SVD algorithm
	Slide 18: Example: Natural images
	Slide 19: Example: Natural images
	Slide 20: Example: Natural images
	Slide 21: Missing and corrupted data
	Slide 22: PCA with missing data
	Slide 23: Outliers
	Slide 24: Modeling outliers
	Slide 25: Robust PCA
	Slide 26: How to perform separation/recovery?
	Slide 27: Convex relaxation
	Slide 28: Convex programs for separation/recovery
	Slide 29: Application: Collaborative filtering
	Slide 30
	Slide 31: Application: Response data
	Slide 32: Application: Multidimensional scaling
	Slide 33: Application: Removing face illumination
	Slide 34: Application: Background subtraction
	Slide 35: When does it work?
	Slide 36: How much data do we need?
	Slide 37: Incoherence
	Slide 38: Matrix completion
	Slide 39: Robust PCA

