
Where else can we use kernels?

Lots of things!

Recall PCA, where our goal is to find an approximation

where

•

• with orthonormal columns

•

Connection to SVD

Recall the singular value decomposition (SVD)

If is a real matrix

• is a orthonormal matrix

• is an orthonormal matrix

• is a diagonal matrix

where and

The principal eigenvectors are the first columns of when the columns of

are filled with

singular value

square root of eigenvalue of

Visual interpretation

PCA as an embedding

If we don’t care about and instead only want the ’s, we can get this by instead

taking the eigendecomposition of

Note that depends only on inner products between vectors in the dataset

Summary of kernel PCA

Input: , kernel , desired dimension

1. Form , where is our kernel matrix and

is the “centering matrix” (Optional)

2. Compute eigendecomposition

3. Set to be the first rows of

Useful in settings where the data would live in a linear

subspace if only we had used the right features

We will return to this later…

Learning from pairwise distances

In PCA, our goal is to take a high-dimensional dataset and generate a low-

dimensional embedding of the data that preserves the (Euclidean) structure of

the data

It is not uncommon to encounter situations where the Euclidean distance is not

appropriate, or where we do not even begin with direct access to the data

Instead, suppose we are given an dissimilarity matrix and wish to find

a dimension and points such that for some

distance function

Applications

• visualization/dimensionality reduction

• extend algorithms to non-Euclidean (or non-metric) data

Dissimilarity matrix

A dissimilarity matrix should satisfy

•

•

•

Note that we do not require the triangle inequality, since in practice many

measures of “dissimilarity” will not have this property

In general, a perfect embedding into the desired dimension will not exist

We will be interested mostly in approximate embeddings

Multidimensional scaling (MDS)

The problem of finding such that approximately agrees

with is known as multidimensional scaling (MDS)

There are a number of variants of MDS based on

• our choice of distance function

• how we quantify “approximately agrees with”

• whether we have access to all entries of

Main distinction

• metric methods attempt to ensure that

• nonmetric methods only attempt to preserve rank ordering, i.e., if

then nonmetric methods seek an embedding that satisfies

Example: Creating a map

Example: Marketing

Example: Whisky

Euclidean embeddings

Today we will focus primarily on the metric case where we observe all of and

choose

To see how we might find an embedding, first consider the reverse process…

Given an (exact) embedding , where the form the columns of

, how can we compute ?

Consider , i.e., the matrix with entries

where and

Finding the embedding

Thus, we know that

We are given , but is actually part of what we are trying to estimate, right?

Consider the “centering matrix”

Observe that is simply our data set with the mean subtracted off

If all we know are distances between pairs of points, we have lost all information

about any rigid transformation (e.g., a translation) of our data

Finding the embedding

We are free to enforce that our embedding is centered around the origin, in which

case we are interested in

Note that

We can compute , from which we can then find by

computing an eigendecomposition

Classical MDS

Even if a dissimilarity matrix cannot be perfectly embedded into dimensions,

this suggests an approximate algorithm

1. Form

2. Compute the eigendecomposition

3. Return , i.e., the matrix whose rows are given by for

It can be shown that classical MDS finds the embedding that minimizes either

or

(Eckart-Young Theorem)

Equivalence between PCA and MDS

Suppose we have and set to be such that

The result of classical MDS applied to is the same (up to a rigid transformation)

as applying PCA to

PCA computes an eigendecomposition of , or equivalently, the SVD of

to yield the factorization

MDS computes an eigendecomposition of

Subtle difference between PCA and MDS

The two approaches give the same embedding

PCA also comes with and

• lets us compute

• more importantly, lets us compute

The latter is critical in a real-world application if we want to use PCA/MDS as a

technique for feature extraction

Is there anything we can do to recover and in the MDS setting?

Almost… we cannot recover and without …

But we can compute the mapping

Computing the MDS mapping

Given the SVD of , is given by the first columns of

Rearranging, we have that

MDS provides us with : the first rows of

This also gives us : the first columns of

Remember that we obtained via the eigendecomposition

Neat fact: Since , is an eigenvector of (with eigenvalue),

and thus

Is this enough?

Putting this all together, we can write

OK… but this still looks like we need to have , right?

In MDS, we only get to observe and wish to embed based on the

observations

Using what we actually have…

We are given and

Let denote the column mean of

Consider the vector :

Out-of-sample extension for MDS

From this, we have that

Combining this with what we had before, we can write

where the last equality follows from our “neat fact” used a few slides before

Thus, we can easily add new points to an MDS embedding!

Extensions of MDS

Classical MDS minimizes the loss function

Many other choices for loss function exist

Perhaps the most common alternative is the stress function

where the are fixed weights

– can use to handle missing data

– can set to more heavily penalize errors on nearby pairs of points

Stress criteria are typically minimized by iterative procedures

Nonlinear embeddings

The goal of embeddings/dimensionality reduction is to map a (potentially) high-

dimensional dataset into a low-dimensional one in a way such that global and/or

local geometric and topological properties are preserved

While PCA/MDS is the most popular method for this in practice, many high-

dimensional data sets have nonlinear structure that is difficult to capture via

linear methods

Kernel PCA

One approach to nonlinear dimensionality reduction is to “kernelize” PCA as we

previously discussed

Map the data to where is a nonlinear mapping

to a (typically) higher dimensional space

• Apply PCA to via

– requires explicitly computing

• Apply MDS via

i.e., compute eigendecomposition of

Summary of kernel PCA

Input: , kernel , desired dimension

1. Form , where is our kernel matrix and

is the “centering matrix” (Optional)

2. Compute eigendecomposition

3. Set to be the first rows of

Output: A mapping given by

where

Isomap

Isometric feature mapping (Isomap) is another nonlinear dimensionality reduction

technique that can be viewed as an extension of MDS

Assumes that the data lives on a low-dimensional manifold (also referred to as a

technique for manifold learning)

Given a dataset , rather than computing the matrix via

, Isomap tries to compute an estimate of the geodesic distance

along the manifold

Estimating the geodesic distance

Geodesic distances are estimated by computing shortest paths in a proximity

graph

Form a matrix as follows:

• for each , define a local neighborhood

– -nearest neighbors of

– all such that

• for each , set for all

represents the weighted adjacency matrix of a graph

Compute by setting to be the length of the shortest path from node to

node in the graph described by

Out-of-sample extension using the same technique as MDS

Example: Swiss roll

Example: Facial pose

Example: Handwritten digits

Locally linear embedding (LLE)

A potential challenge for Isomap is that estimates of the geodesic distance

between points that are very far from each other on the manifold can grow

increasingly inaccurate

Locally linear embedding (LLE) capitalizes on the intuition that a data manifold

that is globally nonlinear will still appear linear in local pieces

LLE does not try to explicitly model global geodesic distances, but instead tries to

preserve the structure in the data by trying to “patch together” local pieces of the

manifold

The LLE algorithm

Given a data set , LLE consists of

1. For each , define a local neighborhood

2. Solve

3. Fix and solve

constrained

least squares

problem

eigenvalue

problem

Another take on LLE

The eigenvalue problem at the heart of LLE can also (more compactly) be written

as

which in turn can also be written as

This is exactly the same type of problem we encountered in PCA, the solution to

which can be obtained via an eigendecomposition of

Note: Out-of-sample extension via where are

computed via the same constrained least squares problem as above

Example: Facial expression

Kernel PCA, Isomap, and LLE

• Kernel PCA

– assumes linear embedding will work when using suitable features

• Isomap

– emphasizes global distance preservation

– can distort local geometry

• LLE

– emphasizes local geometry preservation

– can distort global geometry

▪ far away points can get mapped close to each other

• Many other variants of nonlinear dimensionality reduction along these same lines

have been developed

– Laplacian eigenmaps, local tangent space alignment, diffusion maps, t-distributed

stochastic neighbor embedding…

	Slide 1: Where else can we use kernels?
	Slide 2: Connection to SVD
	Slide 3: Visual interpretation
	Slide 4: PCA as an embedding
	Slide 5: Summary of kernel PCA
	Slide 6: Learning from pairwise distances
	Slide 7: Dissimilarity matrix
	Slide 8: Multidimensional scaling (MDS)
	Slide 9: Example: Creating a map
	Slide 10: Example: Marketing
	Slide 11: Example: Whisky
	Slide 12: Euclidean embeddings
	Slide 13: Finding the embedding
	Slide 14: Finding the embedding
	Slide 15: Classical MDS
	Slide 16: Equivalence between PCA and MDS
	Slide 17: Subtle difference between PCA and MDS
	Slide 19: Computing the MDS mapping
	Slide 20: Is this enough?
	Slide 21: Using what we actually have…
	Slide 22: Out-of-sample extension for MDS
	Slide 23: Extensions of MDS
	Slide 24: Nonlinear embeddings
	Slide 25: Kernel PCA
	Slide 26: Summary of kernel PCA
	Slide 27: Isomap
	Slide 28: Estimating the geodesic distance
	Slide 29: Example: Swiss roll
	Slide 30: Example: Facial pose
	Slide 31: Example: Handwritten digits
	Slide 32: Locally linear embedding (LLE)
	Slide 33: The LLE algorithm
	Slide 34: Another take on LLE
	Slide 35: Example: Facial expression
	Slide 36: Kernel PCA, Isomap, and LLE

