
Where else can we use kernels?

Lots of things!  

Recall PCA, where our goal is to find an approximation

where

•

• with orthonormal columns

•



Connection to SVD

Recall the singular value decomposition (SVD)

If     is a real           matrix

• is a           orthonormal matrix

• is an            orthonormal matrix

• is a            diagonal matrix 

where                          and 

The principal eigenvectors are the first     columns of      when the columns of      

are filled with

singular value

square root of       eigenvalue of 



Visual interpretation



PCA as an embedding

If we don’t care about     and instead only want the    ’s, we can get this by instead 

taking the eigendecomposition of

Note that           depends only on inner products between vectors in the dataset



Summary of kernel PCA

Input:                            , kernel    , desired dimension

1. Form                     , where     is our kernel matrix and      

is the “centering matrix” (Optional)

2. Compute eigendecomposition

3. Set      to be the first    rows of 

Useful in settings where the data would live in a linear 

subspace if only we had used the right features

We will return to this later…



Learning from pairwise distances

In PCA, our goal is to take a high-dimensional dataset and generate a low-

dimensional embedding of the data that preserves the (Euclidean) structure of 

the data

It is not uncommon to encounter situations where the Euclidean distance is not 

appropriate, or where we do not even begin with direct access to the data

Instead, suppose we are given an            dissimilarity matrix and wish to find 

a dimension    and points                             such that                           for some 

distance function 

Applications

• visualization/dimensionality reduction

• extend algorithms to non-Euclidean (or non-metric) data



Dissimilarity matrix

A dissimilarity matrix should satisfy

•

•

•

Note that we do not require the triangle inequality, since in practice many 

measures of “dissimilarity” will not have this property 

In general, a perfect embedding into the desired dimension will not exist

We will be interested mostly in approximate embeddings



Multidimensional scaling (MDS)

The problem of finding                            such that                 approximately agrees 

with       is known as multidimensional scaling (MDS)

There are a number of variants of MDS based on

• our choice of distance function

• how we quantify “approximately agrees with”

• whether we have access to all entries of

Main distinction

• metric methods attempt to ensure that

• nonmetric methods only attempt to preserve rank ordering, i.e., if                 

then nonmetric methods seek an embedding that satisfies



Example: Creating a map



Example: Marketing



Example: Whisky



Euclidean embeddings

Today we will focus primarily on the metric case where we observe all of     and 

choose 

To see how we might find an embedding, first consider the reverse process…

Given an (exact) embedding    , where the                            form the columns of     

, how can we compute     ?

Consider      , i.e., the matrix with entries

where                                            and



Finding the embedding

Thus, we know that

We are given      , but    is actually part of what we are trying to estimate, right?

Consider the “centering matrix”

Observe that                  is simply our data set      with the mean subtracted off

If all we know are distances between pairs of points, we have lost all information 

about any rigid transformation (e.g., a translation) of our data



Finding the embedding

We are free to enforce that our embedding is centered around the origin, in which 

case we are interested in

Note that

We can compute                                          , from which we can then find      by 

computing an eigendecomposition



Classical MDS

Even if a dissimilarity matrix     cannot be perfectly embedded into    dimensions, 

this suggests an approximate algorithm 

1. Form  

2. Compute the eigendecomposition

3. Return                             , i.e., the matrix whose rows are given by              for

It can be shown that classical MDS finds the embedding that minimizes either                       

or 

(Eckart-Young Theorem)



Equivalence between PCA and MDS

Suppose we have                            and set     to be such that

The result of classical MDS applied to      is the same (up to a rigid transformation) 

as applying PCA to 

PCA computes an eigendecomposition of                  , or equivalently, the SVD of

to yield the factorization

MDS computes an eigendecomposition of  



Subtle difference between PCA and MDS

The two approaches give the same embedding      

PCA also comes with      and     

• lets us compute

• more importantly, lets us compute

The latter is critical in a real-world application if we want to use PCA/MDS as a 

technique for feature extraction

Is there anything we can do to recover     and     in the MDS setting?

Almost… we cannot recover     and     without     …

But we can compute the mapping 



Computing the MDS mapping

Given the SVD of                         ,      is given by the first    columns of     

Rearranging, we have that

MDS provides us with    : the first    rows of

This also gives us     : the first    columns of 

Remember that we obtained      via the eigendecomposition

Neat fact: Since               ,     is an eigenvector of     (with eigenvalue            ), 

and thus



Is this enough?

Putting this all together, we can write

OK… but this still looks like we need to have     , right? 

In MDS, we only get to observe        and wish to embed     based on the

observations



Using what we actually have…

We are given      and

Let                      denote the column mean of

Consider the vector               :



Out-of-sample extension for MDS

From this, we have that

Combining this with what we had before, we can write

where the last equality follows from our “neat fact” used a few slides before

Thus, we can easily add new points to an MDS embedding!



Extensions of MDS

Classical MDS minimizes the loss function

Many other choices for loss function exist

Perhaps the most common alternative is the stress function

where the         are fixed weights

– can use                       to handle missing data

– can set                  to more heavily penalize errors on nearby pairs of points

Stress criteria are typically minimized by iterative procedures



Nonlinear embeddings

The goal of embeddings/dimensionality reduction is to map a (potentially) high-

dimensional dataset into a low-dimensional one in a way such that global and/or 

local geometric and topological properties are preserved

While PCA/MDS is the most popular method for this in practice, many high-

dimensional data sets have nonlinear structure that is difficult to capture via 

linear methods



Kernel PCA

One approach to nonlinear dimensionality reduction is to “kernelize” PCA as we 

previously discussed

Map the data                   to                                 where     is a nonlinear mapping 

to a (typically) higher dimensional space

• Apply PCA to                                 via 

– requires explicitly computing

• Apply MDS via                                  

i.e., compute eigendecomposition of



Summary of kernel PCA

Input:                            , kernel    , desired dimension

1. Form                     , where     is our kernel matrix and      

is the “centering matrix” (Optional)

2. Compute eigendecomposition

3. Set      to be the first    rows of 

Output: A mapping                      given by

where



Isomap

Isometric feature mapping (Isomap) is another nonlinear dimensionality reduction 

technique that can be viewed as an extension of MDS

Assumes that the data lives on a low-dimensional manifold (also referred to as a 

technique for manifold learning)

Given a dataset                           , rather than computing the matrix     via    

, Isomap tries to compute an estimate of the geodesic distance 

along the manifold



Estimating the geodesic distance

Geodesic distances are estimated by computing shortest paths in a proximity 

graph

Form a matrix      as follows:

• for each     , define a local neighborhood

– -nearest neighbors of  

– all      such that          

• for each     , set                                for all             

represents the weighted adjacency matrix of a graph

Compute      by setting      to be the length of the shortest path from node    to 

node    in the graph described by

Out-of-sample extension using the same technique as MDS



Example: Swiss roll



Example: Facial pose



Example: Handwritten digits



Locally linear embedding (LLE)

A potential challenge for Isomap is that estimates of the geodesic distance 

between points that are very far from each other on the manifold can grow 

increasingly inaccurate

Locally linear embedding (LLE) capitalizes on the intuition that a data manifold 

that is globally nonlinear will still appear linear in local pieces

LLE does not try to explicitly model global geodesic distances, but instead tries to 

preserve the structure in the data by trying to “patch together” local pieces of the 

manifold



The LLE algorithm

Given a data set                          , LLE consists of 

1. For each     , define a local neighborhood    

2. Solve

3. Fix       and solve

constrained

least squares

problem

eigenvalue

problem



Another take on LLE

The eigenvalue problem at the heart of LLE can also (more compactly) be written 

as

which in turn can also be written as

This is exactly the same type of problem we encountered in PCA, the solution to 

which can be obtained via an eigendecomposition of

Note: Out-of-sample extension via                 where                are 

computed via the same constrained least squares problem as above



Example: Facial expression



Kernel PCA, Isomap, and LLE

• Kernel PCA

– assumes linear embedding will work when using suitable features

• Isomap

– emphasizes global distance preservation

– can distort local geometry

• LLE

– emphasizes local geometry preservation

– can distort global geometry

▪ far away points can get mapped close to each other

• Many other variants of nonlinear dimensionality reduction along these same lines 

have been developed

– Laplacian eigenmaps, local tangent space alignment, diffusion maps, t-distributed 

stochastic neighbor embedding…
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