
Beyond plugin methods

Plugin methods can be useful in practice, but they are also somewhat limited

• There are always distributions where our assumptions are violated

• If our assumptions are wrong, the output is totally unpredictable

• Can be hard to verify whether our assumptions are right

• Require solving a more difficult problem as an intermediate step

For most of the remainder of this course will focus on (nonparametric) methods

that avoid making such strong assumptions about the (unknown) process generating

the data

Suppose and that

By setting , we can reduce any linear classifier to

comparing to a threshold for some

Single layer neural network

How to learn ?

Nonparametric linear classifiers

Frank Rosenblatt (1957)

Given

• training data

• a guess for

Pick any (i.e., pick any of our observations),

and update according to

Perceptron Learning Algorithm (PLA)

Iterate

Simply repeat this process

That’s it!

Why might this work?

If and , then the update increases

If and , then the update decreases

pushes in the

right direction

Another perspective

The core iteration of the PLA is

We can also write this as

You will encounter an expression that looks a lot like this on the next homework…

PLA as stochastic gradient descent

In the next homework, you will implement a stochastic gradient descent version

of logistic regression, where each update is of the form

In contrast, the PLA consists of updates of the form

Provable guarantees for the PLA

We can view the PLA as (almost) stochastic gradient descent applied to a slightly

different likelihood function than we considered in the context of logistic

regression

However, we can also provide very simple proofs that, under certain

(nonparametric) assumptions, the PLA will result in a good classifier

In particular, we will see that if the training data is linearly separable, then the

PLA will find a separating hyperplane in a finite number of iterations

Linearly separable data sets

We say that a data set is linearly separable if there exists

and such that

for

We refer to as a separating hyperplane

How can we find a separating hyperplane?

One approach is to use the PLA

You will prove this on the next homework, but to see roughly how the proof works,

we need to do a bit of geometry first

Let define a hyperplane, and pick two points on the hyperplane, then

Hence, is orthogonal to all vectors that are parallel to the hyperplane

Geometry of separating hyperplanes

We call the normal vector to the hyperplane

It is unique up to its sign

Question

Let . How far is from ?

Write where and

Distance to the hyperplane

We can get a formula for the distance from to by

observing that

PLA finds a separating hyperplane

Theorem

If a separating hyperplane exists, then the PLA will find one in finitely many

iterations.

Let define a separating hyperplane with . Let

denote the distance from the hyperplane to the closest in the training data,

and let .

Suppose that we count iterations as the number of actual updates to , i.e., we

assume that at each iteration we select an such that and

update according to

PLA finds a separating hyperplane

Under these assumptions, you can (will!) show that if at iteration there exists an

such that , then we necessarily have

Said differently, if

then we must have found a separating hyperplane

Drawbacks

– we don’t know

– a separating hyperplane may not be the best hyperplane

Are all separating hyperplanes equal?

The maximum margin hyperplane

The margin of a separating hyperplane is the distance from the hyperplane to

the closest

The maximum margin or optimal separating hyperplane is the solution of

Larger margin better generalization to new data

Canonical form

Our parameterization of a hyperplane as a normal vector and an offset is (sort

of) overdetermined

– e.g., in we are using three parameters to describe a line, which really only needs

two parameters plus a sign…

Another way of seeing this is to realize that

describes the same hyperplane for all , and the same classifier for all

It is often useful to remove this ambiguity by choosing a particular scaling. In the

case of a separating hyperplane, we will say are in canonical form if

• for all

• for some

Maximum margin revisited

If we restrict ourselves to hyperplanes in canonical form, then

Thus we can express as

Optimal separating hyperplanes

• This is an example of a constrained optimization program

– in particular, a quadratic program

• At the solution, there will always be at least some such that

These are called support vectors

• This optimization problem forms the core idea behind support vector machines

What if our data is not linearly separable?

The plugin methods we described can naturally accommodate data that isn’t

perfectly linearly separable

How can we extend the notion of an optimal separating hyperplane to the case of

data that is not separable?

The constraint that for every training sample can only be

satisfied for separable data

Idea: Introduce slack variables that allow us to violate some of

the constraints by changing them to

How should we set ?

Optimal soft-margin hyperplane

We would ideally like for most of the to be zero

Note that if is misclassified, then

Hence, our training error

The optimal soft-margin hyperplane is given by

is a “cost” parameter set by the user

Setting the cost parameter

allows us to trade off between fitting the data and having a large “margin”

It also controls the influence of outliers

We will discuss strategies for setting in more detail later on

large
small

Nonlinear feature maps

Sometimes linear classifiers are terrible!

One way to create nonlinear estimators or classifiers is to first transform the data

via a nonlinear feature map

After applying , we can then try applying a linear method to the transformed

data

Example

This data set is not linearly separable

Consider the mapping

The dataset is linearly separable after applying this feature map:

Issues with nonlinear feature maps

Suppose we transform our data via

where

• If , then this can lead to problems with overfitting

– you can always find a separating hyperplane

• When is very large, there can be an increased computational burden

The “kernel trick”

Fortunately, there is a clever way to get around this computational challenge by

exploiting two facts:

• Many machine learning algorithms only involve the data through inner products

• For many interesting feature maps , the function

has a simple, closed form expression that can be evaluated without explicitly

calculating and

standard

dot product

Kernel-based classifiers

Algorithms we’ve seen that only need to compute inner products:

• nearest-neighbor classifiers

Kernel-based classifiers

Algorithms we’ve seen that only need to compute inner products:

• maximum margin hyperplanes

it is a fact that the optimal can be expressed as

for some choice of

Kernel-based classifiers

Algorithms we’ve seen that only need to compute inner products:

• maximum margin hyperplanes

Example: Quadratic kernel

Quadratic kernel

What is and what is the dimension of the corresponding feature space?

Nonhomogeneous quadratic kernel

In this case, the corresponding is similar to the homogenous quadratic

kernel, but it also replicates

Inner product kernel

Definition. An inner product kernel is a mapping

for which there exists an inner product space and a mapping such

that

for all

Given a function , how can we tell when it is an inner product kernel?

• Mercer’s theorem

• Positive semidefinite property

Positive semidefinite kernels

We say that is a positive semidefinite kernel if

• is symmetric

• for all and all , the Gram matrix

defined by

is positive semidefinite, i.e., for all

Theorem

is an inner product kernel if and only if is a positive semidefinite kernel

Proof: (Future homework)

Examples: Polynomial kernels

Homogeneous polynomial kernel

Inhomogenous polynomial kernel

maps to the set of all monomials of degree

Examples: Gaussian/RBF kernels

Gaussian / Radial basis function (RBF) kernel:

One can show that is a positive semidefinite kernel, but what is ?

is infinite dimensional!

Kernels in action: SVMs

In order to more deeply appreciate

• why we can kernelize the maximum margin optimization problem

• how to actually solve this optimization problem with a practical algorithm

we will need to spend a bit of time learning about constrained optimization

This stuff is super useful, even outside of this context

	Slide 1: Beyond plugin methods
	Slide 2: Nonparametric linear classifiers
	Slide 3: Perceptron Learning Algorithm (PLA)
	Slide 4: Iterate
	Slide 5: Another perspective
	Slide 6: PLA as stochastic gradient descent
	Slide 7: Provable guarantees for the PLA
	Slide 8: Linearly separable data sets
	Slide 9: How can we find a separating hyperplane?
	Slide 10: Geometry of separating hyperplanes
	Slide 11: Distance to the hyperplane
	Slide 12: PLA finds a separating hyperplane
	Slide 13: PLA finds a separating hyperplane
	Slide 14: Are all separating hyperplanes equal?
	Slide 15: The maximum margin hyperplane
	Slide 16: Canonical form
	Slide 17: Maximum margin revisited
	Slide 18: Optimal separating hyperplanes
	Slide 19: What if our data is not linearly separable?
	Slide 20: Optimal soft-margin hyperplane
	Slide 21: Setting the cost parameter
	Slide 22: Nonlinear feature maps
	Slide 23: Example
	Slide 24: Issues with nonlinear feature maps
	Slide 25: The “kernel trick”
	Slide 26: Kernel-based classifiers
	Slide 27: Kernel-based classifiers
	Slide 28: Kernel-based classifiers
	Slide 29: Example: Quadratic kernel
	Slide 30: Quadratic kernel
	Slide 31: Nonhomogeneous quadratic kernel
	Slide 33: Inner product kernel
	Slide 34: Positive semidefinite kernels
	Slide 35: Examples: Polynomial kernels
	Slide 36: Examples: Gaussian/RBF kernels
	Slide 37: Kernels in action: SVMs

