
Beyond plugin methods

Plugin methods can be useful in practice, but they are also somewhat limited

• There are always distributions where our assumptions are violated

• If our assumptions are wrong, the output is totally unpredictable

• Can be hard to verify whether our assumptions are right

• Require solving a more difficult problem as an intermediate step

For most of the remainder of this course will focus on (nonparametric) methods 

that avoid making such strong assumptions about the (unknown) process generating 

the data



Suppose              and that 

By setting                                          , we can reduce any linear classifier to 

comparing          to a threshold for some 

Single layer neural network

How to learn     ? 

Nonparametric linear classifiers



Frank Rosenblatt (1957)

Given 

• training data

• a guess for 

Pick any    (i.e., pick any of our observations), 

and update according to 

Perceptron Learning Algorithm (PLA)



Iterate

Simply repeat this process

That’s it!

Why might this work?

If and                                    , then the update increases

If               and                                 , then the update decreases

pushes in the 

right direction



Another perspective

The core iteration of the PLA is                                

We can also write this as

You will encounter an expression that looks a lot like this on the next homework…



PLA as stochastic gradient descent

In the next homework, you will implement a stochastic gradient descent version 

of logistic regression, where each update is of the form

In contrast, the PLA consists of updates of the form



Provable guarantees for the PLA

We can view the PLA as (almost) stochastic gradient descent applied to a slightly 

different likelihood function than we considered in the context of logistic 

regression

However, we can also provide very simple proofs that, under certain 

(nonparametric) assumptions, the PLA will result in a good classifier

In particular, we will see that if the training data is linearly separable, then the 

PLA will find a separating hyperplane in a finite number of iterations



Linearly separable data sets

We say that a data set                       is linearly separable if there exists               

and            such that

for 

We refer to                                  as a separating hyperplane



How can we find a separating hyperplane?

One approach is to use the PLA

You will prove this on the next homework, but to see roughly how the proof works, 

we need to do a bit of geometry first

Let         define a hyperplane, and pick two points on the hyperplane, then 

Hence,     is orthogonal to all vectors that are parallel to the hyperplane



Geometry of separating hyperplanes

We call        the normal vector to the hyperplane

It is unique up to its sign 

Question 

Let            .  How far is    from                                          ?

Write                           where                          and



Distance to the hyperplane

We can get a formula for the distance from    to by 

observing that 



PLA finds a separating hyperplane

Theorem

If a separating hyperplane exists, then the PLA will find one in finitely many 

iterations.

Let      define a separating hyperplane with                   . Let

denote the distance from the hyperplane to the closest      in the training data, 

and let                            .

Suppose that we count iterations as the number of actual updates to    , i.e., we 

assume that at each iteration we select an    such that                                   and 

update according to



PLA finds a separating hyperplane

Under these assumptions, you can (will!) show that if at iteration    there exists an      

such that                                 , then we necessarily have   

Said differently, if   

then we must have found a separating hyperplane

Drawbacks

– we don’t know    

– a separating hyperplane may not be the best hyperplane



Are all separating hyperplanes equal? 



The maximum margin hyperplane

The margin of a separating hyperplane is the distance from the hyperplane to 

the closest

The maximum margin or optimal separating hyperplane is the solution of  

Larger margin        better generalization to new data



Canonical form

Our parameterization of a hyperplane as a normal vector  and an offset    is (sort 

of) overdetermined

– e.g., in      we are using three parameters to describe a line, which really only needs 

two parameters plus a sign…

Another way of seeing this is to realize that 

describes the same hyperplane for all , and the same classifier for all 

It is often useful to remove this ambiguity by choosing a particular scaling. In the 

case of a separating hyperplane, we will say           are in canonical form if

• for all

• for some



Maximum margin revisited

If we restrict ourselves to hyperplanes in canonical form, then

Thus we can express                                                as



Optimal separating hyperplanes

• This is an example of a constrained optimization program 

– in particular, a quadratic program

• At the solution, there will always be at least some     such that                               

These are called support vectors

• This optimization problem forms the core idea behind support vector machines



What if our data is not linearly separable?

The plugin methods we described can naturally accommodate data that isn’t 

perfectly linearly separable

How can we extend the notion of an optimal separating hyperplane to the case of 

data that is not separable?

The constraint that                                for every training sample can only be 

satisfied for separable data

Idea: Introduce slack variables                         that allow us to violate some of 

the constraints by changing them to

How should we set                  ?     



Optimal soft-margin hyperplane

We would ideally like for most of the     to be zero

Note that if     is misclassified, then     

Hence, our training error 

The optimal soft-margin hyperplane is given by

is a “cost” parameter set by the user



Setting the cost parameter

allows us to trade off between fitting the data and having a large “margin”

It also controls the influence of outliers

We will discuss strategies for setting     in more detail later on

large
small



Nonlinear feature maps

Sometimes linear classifiers are terrible!

One way to create nonlinear estimators or classifiers is to first transform the data 

via a nonlinear feature map

After applying     , we can then try applying a linear method to the transformed 

data



Example

This data set is not linearly separable

Consider the mapping

The dataset is linearly separable after applying this feature map:  



Issues with nonlinear feature maps

Suppose we transform our data via

where

• If          , then this can lead to problems with overfitting

– you can always find a separating hyperplane

• When    is very large, there can be an increased computational burden



The “kernel trick”

Fortunately, there is a clever way to get around this computational challenge by 

exploiting two facts:

• Many machine learning algorithms only involve the data through inner products

• For many interesting feature maps    , the function

has a simple, closed form expression that can be evaluated without explicitly 

calculating           and

standard 

dot product



Kernel-based classifiers

Algorithms we’ve seen that only need to compute inner products:

• nearest-neighbor classifiers



Kernel-based classifiers

Algorithms we’ve seen that only need to compute inner products:

• maximum margin hyperplanes

it is a fact that the optimal     can be expressed as

for some choice of 



Kernel-based classifiers

Algorithms we’ve seen that only need to compute inner products:

• maximum margin hyperplanes



Example: Quadratic kernel



Quadratic kernel

What is      and what is the dimension     of the corresponding feature space?



Nonhomogeneous quadratic kernel

In this case, the corresponding             is similar to the homogenous quadratic 

kernel, but it also replicates 



Inner product kernel

Definition. An inner product kernel is a mapping 

for which there exists an inner product space      and a mapping                       such 

that

for all 

Given a function             , how can we tell when it is an inner product kernel?

• Mercer’s theorem 

• Positive semidefinite property



Positive semidefinite kernels

We say that              is a positive semidefinite kernel if

• is symmetric

• for all     and all                          , the Gram matrix

defined by   

is positive semidefinite, i.e.,                   for all 

Theorem

is an inner product kernel if and only if    is a positive semidefinite kernel

Proof: (Future homework)



Examples: Polynomial kernels

Homogeneous polynomial kernel

Inhomogenous polynomial kernel

maps to the set of all monomials of degree 



Examples: Gaussian/RBF kernels

Gaussian / Radial basis function (RBF) kernel:

One can show that     is a positive semidefinite kernel, but what is     ?

is infinite dimensional!



Kernels in action: SVMs

In order to more deeply appreciate

• why we can kernelize the maximum margin optimization problem

• how to actually solve this optimization problem with a practical algorithm

we will need to spend a bit of time learning about constrained optimization

This stuff is super useful, even outside of this context
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