Unconstrained Optimization
What is it?

For our purposes today,

minimize f(x)

The "Easy” Function Classes

« Convex

Fba + (1 - 0)y) < 0f()+ (1 0)f(y) /

« PL (Polyak-Lojasiewicz)

IVf(@)ls = 2m (f(z) — f(x"))

(no spurious local minima)

Non-Differentiable Convex Functions

 What is a gradient, really?
o (for convex functions)
o Linear lower bound

« Subgradient

o Not necessarily unique at non-
differentiable points

o Subgradient analogs to gradient
methods exist

Regularization

Change the problem from

minimize f(x)

xcRA
to
minimize f(x) + A\r(x)
xcRa
e.g.

minimize f(x) + \||z||”
xR

Some Benefits of Regularization

Better optimization landscape for chosen optimization algo
Infinitely many solutions -> one unique solution
Lower variance in solution / less overfitting

Prefer certain solutions / incorporate domain knowledge
o e.g. L1 regularizer promotes sparse solution

Step-Size Line Search

Sometimes gradient computations are expensive, but loss
computations are cheap

We need to make the most of every gradient computation
we waited for

minimize ¢(a) o) = f(x, + ady)

a>0

Sometimes this subproblem can be solved in closed form
(e.g. convex quadratic problems)

Otherwise, need a different approach...

Step-Size Line Search

« Backtracking: start with a big step, then shrink until
allowable

o Allowable: Armijo condition

fxe) — [z + ady) = ca(d, V[(xy))

A

A\

allowable a

Step-Size Line Search

Backtracking line search
Input: xy, dj,, @ >0, c € (0,1), and p € (0,1).
Initialize: o = &
while ¢(a) > h(a) do
o = po

end while

Proximal Methods

Recall Newton's method uses local
quadratic, which costs a Hessian
computation

What if we just used some quadratic
(that still agrees with the gradient)

Proximal Methods

][y = (z, Az)

1

minimize f(xy) + (V f(xr), Tpr1 — k) + 2 [|h41 — wkHQWf(wk)
Lr41

Lr+1 = T — (vgf(a'?k))_l Vf(xr)

L 1 /
minimize f(xy) + (V f(xr), Tpi1 — @) + 3 |2kt — CBkHZ%I /
LTr4+1

i1 = T — NV ()

(This is gradient descent!)

Proximal Methods

The general form for a proximal step is

L 1
minimize f(x) + — ||Tri1 — $k||2
.’Bk+1 277

« To get GD, we substituted f(x) with its first-order
approximation

« Sometimes it's better if we only use a first-order
approximation for part of the objective function...

Proximal Methods

The LASSO problem is

mini_gmize ly — X062+ X\]||0]],
What if we only used a first-order approximation for the L2
term, and kept the L1 term as-is? This is ISTA (iterative soft-
thresholding algorithm), and it's way better than the
standard subgradient method

0.50

0.05 0.10 0.20

02

— Subgradient method
7| — Generalized gradient

0.

0 200 400 600 800 1000

Chart taken from the lecture notes of Geoff Gordon and Ryan Tibshirani. ISTA is red.

iterations

How Good is GD, Really?

« Hard to say in general, lots of things matter

« Strong Convexity
o Lower bounded by (nonzero) quadratic

V2f(z) = ml

« Smoothness
o Upper bounded by quadratic

V2 f(x) < MI

How Good is GD, Really?

When f is smooth, error decreases as O(1/k)

When f is smooth and strongly convex, error decreases as
O(rk) for some r<1 (called linear convergence)

For reference, Newton's method has quadratic
convergence, which is faster than linear convergence

GD with Momentum

« Some possible reasons to use momentum:
o Better convergence rates (not all problems)
o Better at avoiding spurious local minima
o Prefers certain solutions to others (not always desirable)

o Computing stochastic gradients (in batches), so want an
integral-component to the steps

GD with Momentum

« Polyak’s heavy-ball method

for k=0,1,2,... do
if £k =0 then

Momentum
bii1 <+ Vf(x)
else Gradient

bri1 — b+ V (k) '
end if
Tpy1 < T — Vb

end for

o torch.optim.SGD
o O(1/k) for smooth, strongly convex functions

o (Conjugate Gradients is a variant of heavy ball tuned for quadratics. It's the
fast way to compute A'b in high dimensions)

GD with Momentum

 Nesterov's method

for k=0,1,2,... do
if £ =0 then
bit1 < vf(l’k)
else
brr1 < by +V f(x)
end if

Tpr1 — T — ¥ (Ubpr1 + V()
end for

Momentum

Gradient

o torch.optim.SGD
o O(1/k"2) for smooth, strongly convex functions

GD with Momentum

AdaGrad

Sg < 0
for £ =0,1,2,... do
Spp1 — S+ (Vf(x))” (element-wise)

R iy ——

T (element-wise)

end for

o torch.optim.Adagrad
o More "equitable” trajectory
o Step size naturally shrinks over time

GD with Momentum

 RMSprop

vg < 0
bo +— 0
for k. =0,1,2,... do
Vipr — v + (1 —) (Vf(z))” (element-wise)

bri1 < puby + % (element-wise)
L1 < T — Vgt
end for

o torch.optim.RMSprop
o Gradient history is gradually "forgotten”
o Incorporates a momentum-like term

GD with Momentum

« Adam

vg < 0

mo < 0

for k=0,1,2,... do
Vis1 < Bov + (1 — Bo) (Vf(xr))” (element-wise)
Myt 51’mk + (1= 581)Vf(xr) (element-wise)
V1 € Bk—l—l Vg1

- 1
M1 < ——rt M1

—pFT
Tpi1 < Tp — ’yﬁ (element-wise)

end for

o torch.optim.Adam
o Uses a more classical momentum term
o A more dynamic approach increasing/decreasing step sizes

	Slide 1: Unconstrained Optimization
	Slide 2: The "Easy" Function Classes
	Slide 3: Non-Differentiable Convex Functions
	Slide 4: Regularization
	Slide 5: Some Benefits of Regularization
	Slide 6: Step-Size Line Search
	Slide 7: Step-Size Line Search
	Slide 8: Step-Size Line Search
	Slide 9: Proximal Methods
	Slide 10: Proximal Methods
	Slide 11: Proximal Methods
	Slide 12: Proximal Methods
	Slide 13: How Good is GD, Really?
	Slide 14: How Good is GD, Really?
	Slide 15: GD with Momentum
	Slide 16: GD with Momentum
	Slide 17: GD with Momentum
	Slide 18: GD with Momentum
	Slide 19: GD with Momentum
	Slide 20: GD with Momentum
	Slide 21

