Unconstrained Optimization

What is it?

For our purposes today,

 $\underset{\boldsymbol{x} \in \mathbb{R}^d}{\text{minimize}} f(\boldsymbol{x})$

The "Easy" Function Classes

• Convex

$$f(\theta \boldsymbol{x} + (1-\theta)\boldsymbol{y}) \leq \theta f(\boldsymbol{x}) + (1-\theta)f(\boldsymbol{y})$$

• PL (Polyak-Łojasiewicz)

 $\|\nabla f(\boldsymbol{x})\|_2^2 \ge 2m\left(f(\boldsymbol{x}) - f(\boldsymbol{x}^\star)\right)$

(no spurious local minima)

Non-Differentiable Convex Functions

- What is a gradient, really?
 - (for convex functions)
 - Linear lower bound

- Subgradient
 - Not necessarily unique at nondifferentiable points
 - Subgradient analogs to gradient methods exist

Regularization

Change the problem from

 $\underset{\boldsymbol{x} \in \mathbb{R}^d}{\operatorname{minimize}} f(\boldsymbol{x})$

to

 $\underset{\boldsymbol{x} \in \mathbb{R}^d}{\text{minimize}} f(\boldsymbol{x}) + \lambda r(\boldsymbol{x})$

e.g.

$$\underset{\boldsymbol{x} \in \mathbb{R}^d}{\operatorname{minimize}} f(\boldsymbol{x}) + \lambda \left| |\boldsymbol{x}| \right|^2$$

Some Benefits of Regularization

- Better optimization landscape for chosen optimization algo
- Infinitely many solutions -> one unique solution
- Lower variance in solution / less overfitting
- Prefer certain solutions / incorporate domain knowledge
 - \circ e.g. L1 regularizer promotes sparse solution

Step-Size Line Search

- Sometimes gradient computations are expensive, but loss computations are cheap
- We need to make the most of every gradient computation we waited for

$$\underset{\alpha \ge 0}{\text{minimize } \phi(\alpha)} \qquad \phi(\alpha) = f(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k)$$

- Sometimes this subproblem can be solved in closed form (e.g. convex quadratic problems)
- Otherwise, need a different approach...

Step-Size Line Search

- Backtracking: start with a big step, then shrink until *allowable*
 - *Allowable*: Armijo condition

Step-Size Line Search

Backtracking line search

```
Input: \boldsymbol{x}_k, \, \boldsymbol{d}_k, \, \bar{\alpha} > 0, \, c \in (0, 1), \text{ and } \rho \in (0, 1).
Initialize: \alpha = \bar{\alpha}
while \phi(\alpha) > h(\alpha) do
\alpha = \rho \alpha
end while
```

Recall Newton's method uses local quadratic, which costs a Hessian computation

What if we just used *some* quadratic (that still agrees with the gradient)

$$egin{aligned} ||m{x}||_{m{A}}^2 &:= \langle m{x}, m{A}m{x}
angle \ & ext{minimize} \, f(m{x}_k) + \langle
abla f(m{x}_k), m{x}_{k+1} - m{x}_k
angle + rac{1}{2} \, ||m{x}_{k+1} - m{x}_k||_{
abla^2 f(m{x}_k)}^2 \ &m{x}_{k+1} = m{x}_k - ig(
abla^2 f(m{x}_k)ig)^{-1} \,
abla f(m{x}_k) \end{aligned}$$

$$\underset{\boldsymbol{x}_{k+1}}{\operatorname{minimize}} f(\boldsymbol{x}_k) + \langle \nabla f(\boldsymbol{x}_k), \boldsymbol{x}_{k+1} - \boldsymbol{x}_k \rangle + \frac{1}{2} \left| |\boldsymbol{x}_{k+1} - \boldsymbol{x}_k| \right|_{\frac{1}{\eta} \mathbf{I}}^2$$

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \eta \nabla f(\boldsymbol{x}_k)$$

(This is gradient descent!)

The general form for a proximal step is

$$\underset{\boldsymbol{x}_{k+1}}{\text{minimize}} f(\boldsymbol{x}_k) + \frac{1}{2\eta} ||\boldsymbol{x}_{k+1} - \boldsymbol{x}_k||^2$$

- To get GD, we substituted f(x) with its first-order approximation
- Sometimes it's better if we only use a first-order approximation for *part* of the objective function...

The LASSO problem is

$$\underset{\boldsymbol{\theta}}{\operatorname{minimize}} \left| \left| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta} \right| \right|_{2}^{2} + \lambda \left| \left| \boldsymbol{\theta} \right| \right|_{1}$$

What if we only used a first-order approximation for the L2 term, and kept the L1 term as-is? This is **ISTA** (iterative soft-thresholding algorithm), and it's way better than the standard subgradient method

Chart taken from the lecture notes of Geoff Gordon and Ryan Tibshirani. ISTA is red.

iterations

How Good is GD, Really?

- Hard to say in general, lots of things matter
- Strong Convexity

Lower bounded by (nonzero) quadratic

 $\nabla^2 f(\boldsymbol{x}) \succeq m \mathbf{I}$

• Smoothness

Upper bounded by quadratic

 $\nabla^2 f(\boldsymbol{x}) \preceq M \mathbf{I}$

How Good is GD, Really?

- When f is smooth, error decreases as O(1/k)
- When f is smooth and strongly convex, error decreases as O(r^k) for some r<1 (called *linear convergence*)
- For reference, Newton's method has *quadratic convergence*, which is faster than linear convergence

- Some possible reasons to use momentum:
 - Better convergence rates (not all problems)
 - Better at avoiding spurious local minima
 - Prefers certain solutions to others (not always desirable)
 - Computing stochastic gradients (in batches), so want an integral-component to the steps

- torch.optim.SGD
- \circ O(1/k) for smooth, strongly convex functions
- (Conjugate Gradients is a variant of heavy ball tuned for quadratics. It's the fast way to compute A⁻¹b in high dimensions)

• Nesterov's method

for
$$k = 0, 1, 2, ...$$
 do
if $k = 0$ then
 $\boldsymbol{b}_{k+1} \leftarrow \nabla f(\boldsymbol{x}_k)$
else
 $\boldsymbol{b}_{k+1} \leftarrow \mu \boldsymbol{b}_k + \nabla f(\boldsymbol{x}_k)$
end if
 $\boldsymbol{x}_{k+1} \leftarrow \boldsymbol{x}_k - \gamma \left(\mu \boldsymbol{b}_{k+1} + \nabla f(\boldsymbol{x}_k)\right)$
end for

- \circ torch.optim.SGD
- \circ O(1/k^2) for smooth, strongly convex functions

• AdaGrad

$$egin{aligned} & m{s}_0 \leftarrow 0 \ & m{for} \ k = 0, 1, 2, \dots \ & m{do} \ & m{s}_{k+1} \leftarrow m{s}_k + \left(
abla f(m{x}_k)
ight)^2 & (ext{element-wise}) \ & m{x}_{k+1} \leftarrow m{x}_k - \gamma rac{
abla f(m{x}_k)}{\sqrt{m{s}_{k+1}} + \epsilon} & (ext{element-wise}) \ & m{end} \ & m{for} \end{aligned}$$

- \circ torch.optim.Adagrad
- More "equitable" trajectory
- o Step size naturally shrinks over time

RMSprop

$$\begin{aligned} \boldsymbol{v}_{0} &\leftarrow 0 \\ \boldsymbol{b}_{0} &\leftarrow 0 \\ \text{for } k &= 0, 1, 2, \dots \text{ do} \\ \boldsymbol{v}_{k+1} &\leftarrow \alpha \boldsymbol{v}_{k} + (1 - \alpha) \left(\nabla f(\boldsymbol{x}_{k})\right)^{2} \quad (\text{element-wise}) \\ \boldsymbol{b}_{k+1} &\leftarrow \mu \boldsymbol{b}_{k} + \frac{\nabla f(\boldsymbol{x}_{k})}{\sqrt{\boldsymbol{v}_{k+1} + \epsilon}} \quad (\text{element-wise}) \\ \boldsymbol{x}_{k+1} &\leftarrow \boldsymbol{x}_{k} - \gamma \boldsymbol{b}_{k+1} \\ \text{end for} \end{aligned}$$

- \circ torch.optim.RMSprop
- Gradient history is gradually "forgotten"
- Incorporates a momentum-like term

• Adam

$$\begin{aligned} \boldsymbol{v}_{0} &\leftarrow 0 \\ \boldsymbol{m}_{0} &\leftarrow 0 \\ \text{for } k = 0, 1, 2, \dots \text{ do} \\ \boldsymbol{v}_{k+1} &\leftarrow \beta_{2} \boldsymbol{v}_{k} + (1 - \beta_{2}) \left(\nabla f(\boldsymbol{x}_{k})\right)^{2} \quad (\text{element-wise} \\ \boldsymbol{m}_{k+1} &\leftarrow \beta_{1} \boldsymbol{m}_{k} + (1 - \beta_{1}) \nabla f(\boldsymbol{x}_{k}) \quad (\text{element-wise}) \\ \hat{\boldsymbol{v}}_{k+1} &\leftarrow \frac{1}{1 - \beta_{2}^{k+1}} \boldsymbol{v}_{k+1} \\ \hat{\boldsymbol{m}}_{k+1} &\leftarrow \frac{1}{1 - \beta_{1}^{k+1}} \boldsymbol{m}_{k+1} \\ \boldsymbol{x}_{k+1} &\leftarrow \boldsymbol{x}_{k} - \gamma \frac{\hat{\boldsymbol{m}}_{k+1}}{\sqrt{\hat{\boldsymbol{v}}_{k+1} + \epsilon}} \quad (\text{element-wise}) \\ \text{end for} \end{aligned}$$

- o torch.optim.Adam
- Uses a more classical momentum term
- A more dynamic approach increasing/decreasing step sizes