
Logistic regression

This observation gives rise to another class of plugin methods, 

the most important of which is logistic regression, which 

implements the following strategy

1. Assume                                          (             ,          )

2. Directly estimate          (somehow) from the data

3. Plug the estimate                                        

into the formula for the Bayes classifier



Estimating the parameters

Challenge: How to estimate the parameters for

One possibility:

Alternative: Maximum likelihood estimation

For convenience, set

Note that          is really a function of both     and   , so we 

will use the notation              to highlight this dependence



The a posteriori probability of our data

Suppose that we knew   .  Then we could compute

Because of independence, we also have that



Maximum likelihood estimation

We don’t actually know   , but we do know 

Suppose we view                  to be fixed, and view

as just a function of

When we do this,                                                         is 

called the likelihood (or likelihood function)

The method of maximum likelihood aims to estimate     by 

finding the    that maximizes the likelihood

In practice, it is often more convenient to focus on 

maximizing the log-likelihood, i.e., 



The log-likelihood

To see why, note that the likelihood in our case is given by

Thus, the log-likelihood is given by



Maximizing the log-likelihood

How can we maximize

with respect to    ?

Find a     such that

(i.e., compute the partial derivatives and set them to zero)



Computing the gradient

It is not too hard to show that

This gives us            equations, but they are nonlinear and 

have no closed-form solution

How can we solve this problem?



Optimization

Throughout signal processing and machine learning, we will 

very often encounter problems of the form

(or                             for today)

In many (most?) cases, we cannot compute the solution simply 

by setting                      and solving for

However, there are many powerful algorithms for finding

using a computer  



Gradient descent

A simple way to try to find the minimum of our objective 

function is to iteratively “roll downhill”

From     , take a step in the direction of the negative gradient

: “step size”



Convergence of gradient descent

The core iteration of gradient descent is to compute

Note that if                             , then we have found the 

minimum and                  , so the algorithm will terminate

If    is convex and sufficiently smooth, then gradient descent 

(with a fixed step size   ) is guaranteed to converge to the 

global minimum of

convex not

convex



Step size matters!

Even though gradient descent provably converges, it can 

potentially take a while
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Newton’s method

Also known as the Newton-Raphson method, this approach 

can be viewed as making a quadratic approximation to   

at each iteration (instead of a linear one)

Hessian

matrix











Optimization for logistic regression

The negative log-likelihood in logistic regression is a convex 

function

Both gradient descent and Newton’s method are common 

strategies for setting the parameters in logistic regression

Newton’s method is much faster when the dimension    is 

small, but is impractical when    is large

Why?

More on this on next week’s homework



Landscape looks quadratic near solution, Newton's 

method works well
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Separable dataset has no unique minimizer, Newton's 

method sends us to infinity
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Landscape is many almost linear regions stitched 

together by quadratic seams. Newton's method blows up 

in linear regions.
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L2 regularization changes those almost linear regions to "shallow" 

quadratic regions without changing the minimizer too much. 

Newton's method now works anywhere.
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Plugin methods so far

Linear discriminant analysis and logistic regression both 

• take a parametric model for the distribution/a posteriori 

probabilities 

• estimate those parameters

• plug these into the formula for the Bayes classifier

Can we take a nonparametric approach?

There are lots of approaches to estimating the distribution of 

our data…

Curse of dimensionality is a major obstacle…



One more plugin method: Naïve Bayes

The Naïve Bayes classifier is an approach built on estimating 

the distribution of the data and then plugging this into the 

Bayes classifier

Makes a (probably naïve) assumption:

Let                                                     denote the random 

feature vector in a classification problem and      the 

corresponding label

The naïve Bayes classifier assumes that, given     ,  

are independent

Sometimes known as “Idiot Bayes”



What does the NB assumption buy us?

The major advantage of NB is that we only need to estimate 

scalar/univariate densities

Let                  be the probability law (density or mass 

function) of  

By the NB assumption

where                            denotes the probability law of 



Naïve Bayes classifier

Let                       be training data and set

•

• any estimate of      

based on

The NB classifier is then given by  

So, how can we determine                           ? 



Continuous features

Suppose that                       is a continuous random variable

Options for estimating                           include

– parametric estimate (e.g., Gaussian MLE)

– kernel density estimate (more on this later!)

– quantize to a discrete random variable



Discrete features

Now suppose that                       takes only the values

Define  

for

Then a natural (maximum likelihood) estimate of 

is

(AKA: a histogram!)



Example



Example: Document classification

Suppose we wish to classify documents into categories

– 0 = politics

– 1 = sports 

– 2 = finance

– …

One simple (but useful) way to represent a document is as

with    representing the number of 

words in our “vocabulary” and          representing the number 

of times word    occurs in the document

“bag of words” model



Multinomial Naïve Bayes 

We can think of each document as consisting of     words 

which are distributed among the    choices in the vocabulary 

independently at random

– multinomial distribution

All that is required in this model is to estimate the probability 

of each word under the different categories:

• For each class   , compute the number of times each word 

appears (across all documents); denote this

• Let                                             denote the total number 

of words appearing in all documents labelled class

• Compute the estimate



Multinomial Naïve Bayes 

With this estimate, for a new document summarized by the 

bag-of-words model                                      , we can 

compute

This gives us the classifier



Undesirable property

It is possible that after training our classifier, we may be 

given an input     where some                  for some word that 

was not observed in the training data for some class    

For such a class, our previous estimate would yield

, and hence 

In this case, class     will never be predicted

This is rather unfortunate…



Laplace smoothing

It could happen that every training document in “sports” 

contains the word “ball”

What happens when we get an article about hockey?

To avoid this problem, it is common to instead use

We can think of this as the result of adding     “pseudo-

samples” to our data to ensure that each word occurs at least 

once

Related to Laplace’s rule of succession: Lapalce smoothing

(Bayesian estimate with a Dirichlet prior)



Other variants

• Bernoulli Naïve Bayes

– used when the features are binary-valued

– example: word occurrence vectors (vs word count vectors)

– simply need to estimate probability of 1 vs 0 for each feature

• Gaussian Naïve Bayes

– models continuous features as univariate Gaussian densities

– estimates mean and variance of data to fit a Gaussian to each 

feature

• Many other extensions

– Gaussian mixture models

– kernel density estimates

– …



Comparison of plugin methods

LDA, logistic regression, and naïve Bayes, are all plugin 

methods that result in linear classifiers

Linear discriminant analysis

– better if Gaussianity assumptions are valid

Logistic regression

– models only the distribution of        , not

– valid for a larger class of distributions

– fewer parameters to estimate

Naïve Bayes

– plugin method based on density estimation  

– scales well to high-dimensions and naturally handles mixture 

of discrete and continuous features 



Beyond plugin methods

Plugin methods can be useful in practice, but they are also 

somewhat limited

• There are always distributions where our assumptions are 

violated

• If our assumptions are wrong, the output is totally 

unpredictable

• Can be hard to verify whether our assumptions are right

• Require solving a more difficult problem as an intermediate 

step

For most of the remainder of this course will focus on 

(nonparametric) methods that avoid making such strong 

assumptions about the (unknown) process generating the data
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