Returning to classification

Consider (X, Y) where

- $X \, \text{is a random vector in } \mathbb{R}^d$
- $Y \in \{0, \dots, K-1\}$ is a random variable (depending on X)
- Let $h : \mathbb{R}^d \to \{0, \dots, K-1\}$ be a *classifier* with *probability of error/risk* given by

$$R(h) := \mathbb{P}[h(X) \neq Y]$$

The **Bayes classifier** (denoted h^*) is the optimal classifier, i.e., the classifier with smallest possible risk

We can calculate this explicitly if we know the joint distribution of (X, Y)

The Bayes classifier

Theorem

The classifier
$$h^*(\mathbf{x}) := \arg \max_y \eta_y(\mathbf{x})$$
 satisfies
 $R^* = R(h^*) \le R(h)$

for any possible classifier h

Recall:
$$\eta_y(\mathbf{x}) := p_{Y|X}(y|\mathbf{x}) = \mathbb{P}[Y = y|X = \mathbf{x}]$$

We can equivalently write $h^*(\mathbf{x}) = \arg \max \pi_y f_{X|Y}(\mathbf{x}|y)$ where $\pi_y = \mathbb{P}[Y = y]$

Generative models and plug-in methods

The Bayes classifier requires knowledge of the joint distribution of (X, Y)

In learning, all we have is the training data $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$

A generative model is an assumption about the unknown distribution

- usually very simplistic
- often *parametric*
- build classifier by estimating the parameters via training data
- plug the result into formula for Bayes classifier
 - "plug-in" methods

Linear discriminant analysis (LDA)

In linear discriminant analysis (LDA), we make a (strong) assumption that

$$X|Y = y \sim \mathcal{N}(\boldsymbol{\mu}_y, \boldsymbol{\Sigma})$$

for y = 0, ..., K - 1

Here $\mathcal{N}(\mu,\Sigma)$ is the multivariate Gaussian/normal distribution with mean μ and covariance matrix Σ

$$\phi(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

Note: Each class has the same covariance matrix Σ

Parameter estimation

In LDA, we assume that the prior probabilities π_y , the mean vectors μ_y , and the covariance matrix Σ are all unknown

To estimate these from the data, we use

$$\widehat{\pi}_{y} = \frac{|\{i : y_{i} = y\}|}{n}$$

$$\widehat{\mu}_{y} = \frac{1}{|\{i : y_{i} = y\}|} \sum_{i:y_{i} = y} \mathbf{x}_{i}$$

$$\widehat{\Sigma} = \frac{1}{n} \sum_{y=0}^{K-1} \sum_{i:y_{i} = y} (\mathbf{x}_{i} - \widehat{\mu}_{y}) (\mathbf{x}_{i} - \widehat{\mu}_{y})^{T}$$

"pooled covariance estimate"

Resulting classifier

The LDA classifier is then

$$\begin{split} \widehat{h}(\mathbf{x}) &= \arg \max_{y} \widehat{\pi}_{y} \cdot \phi(\mathbf{x}; \widehat{\mu}_{y}, \widehat{\Sigma}) \\ &= \arg \max_{y} \log \widehat{\pi}_{y} + \log \phi(\mathbf{x}; \widehat{\mu}_{y}, \widehat{\Sigma}) \\ &= \arg \max_{y} \log \widehat{\pi}_{y} - \frac{1}{2} (\mathbf{x} - \widehat{\mu}_{y})^{T} \widehat{\Sigma}^{-1} (\mathbf{x} - \widehat{\mu}_{y}) \\ &= \arg \min_{y} (\mathbf{x} - \widehat{\mu}_{y})^{T} \widehat{\Sigma}^{-1} (\mathbf{x} - \widehat{\mu}_{y}) - 2 \log \widehat{\pi}_{y} \\ &\text{squared Mahalanobis distance} \\ &\text{between x and } \mu \\ d_{M}(\mathbf{x}; \mu, \Sigma) = \sqrt{(\mathbf{x} - \mu)^{T} \Sigma^{-1} (\mathbf{x} - \mu)} \end{split}$$

Example

Suppose that K = 2

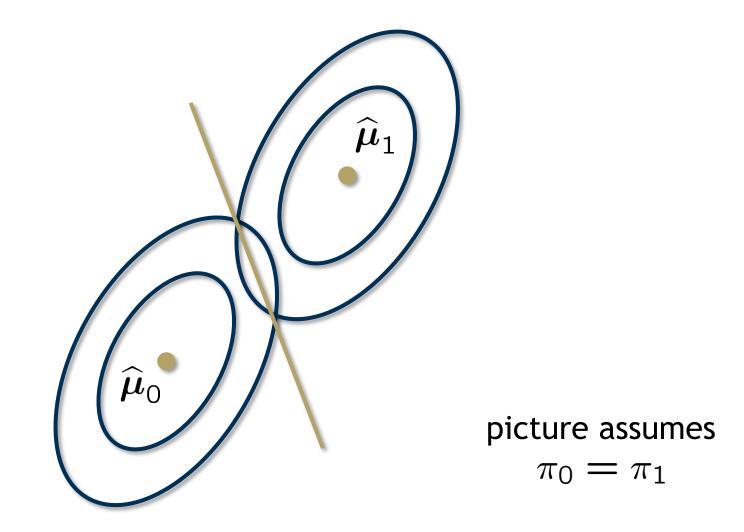
$$d_M^2(\mathbf{x}; \widehat{\boldsymbol{\mu}}_0, \widehat{\boldsymbol{\Sigma}}) - 2\log \widehat{\pi}_0 \underset{1}{\overset{0}{\underset{1}{\leq}}} d_M^2(\mathbf{x}; \widehat{\boldsymbol{\mu}}_1, \widehat{\boldsymbol{\Sigma}}) - 2\log \widehat{\pi}_1$$

It turns out that by setting

$$\mathbf{w} = \widehat{\boldsymbol{\Sigma}}^{-1} (\widehat{\boldsymbol{\mu}}_1 - \widehat{\boldsymbol{\mu}}_0)$$
$$b = \frac{1}{2} \widehat{\boldsymbol{\mu}}_0^T \widehat{\boldsymbol{\Sigma}}^{-1} \widehat{\boldsymbol{\mu}}_0 - \frac{1}{2} \widehat{\boldsymbol{\mu}}_1^T \widehat{\boldsymbol{\Sigma}}^{-1} \widehat{\boldsymbol{\mu}}_1 + \log \frac{\widehat{\pi}_1}{\widehat{\pi}_0}$$
we can re-write this as $\mathbf{w}^T \mathbf{x} + b \underset{1}{\leq} 0$ linear classifier

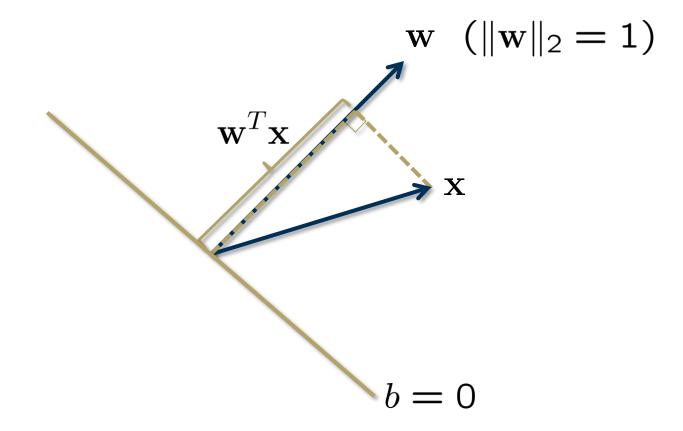
Example

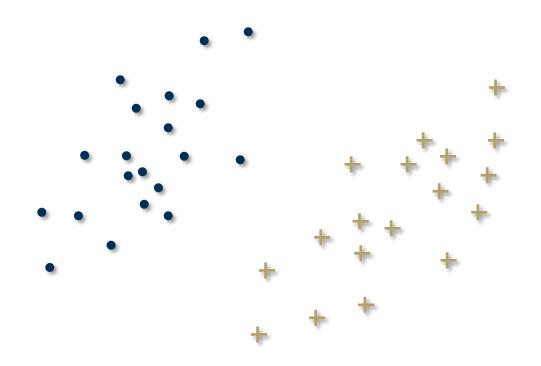
Recall that the contour $\{\mathbf{x} : d_M(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = c\}$ is an *ellipse*

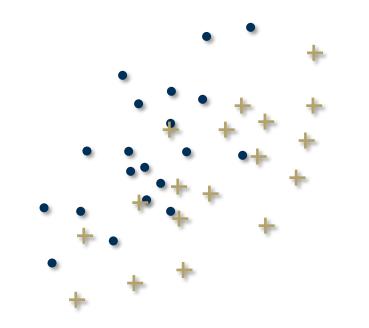


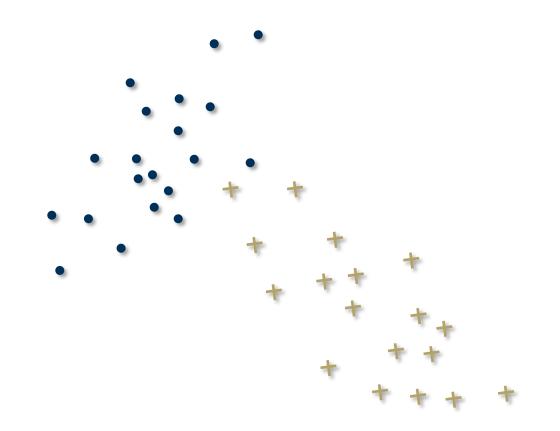
Linear classifiers

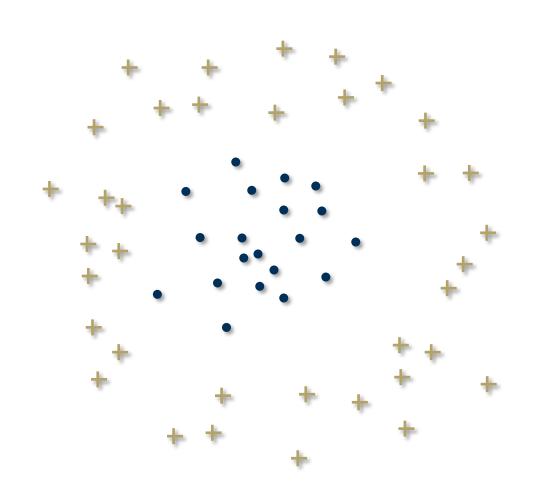
In general, why does $\mathbf{w}^T \mathbf{x} + b \underset{1}{\stackrel{0}{\leq}} 0$ describe a linear classifier?

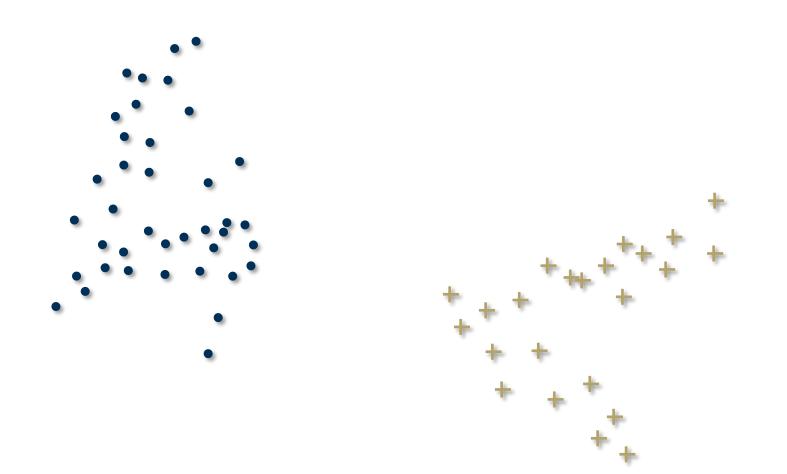






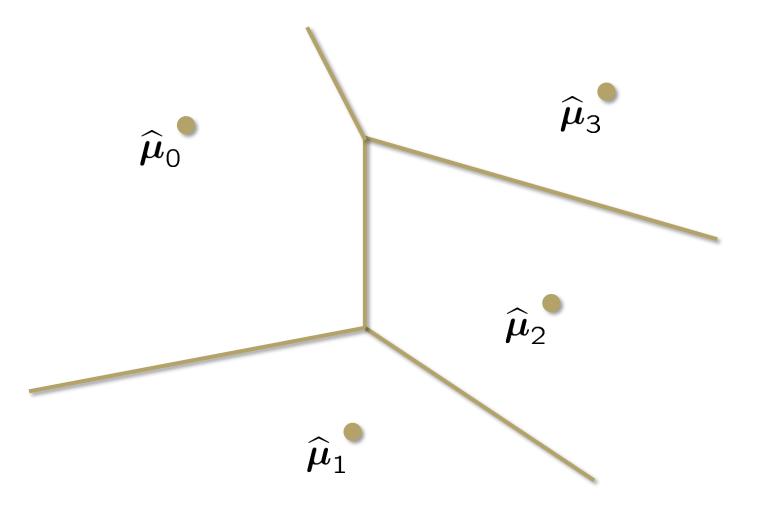






More than two classes

The *decision regions* are convex polytopes (intersections of linear half-spaces)



Quadratic discriminant analysis (QDA)

What happens if we expand the generative model to

$$X|Y = y \sim \mathcal{N}(\boldsymbol{\mu}_y, \boldsymbol{\Sigma}_y)$$

for y = 0, ..., K - 1?

Set
$$\widehat{\Sigma}_y = \frac{1}{|\{i : y_i = y\}|} \sum_{i:y_i = y} (\mathbf{x}_i - \widehat{\mu}_y) (\mathbf{x}_i - \widehat{\mu}_y)^T$$

Proceed as before, only this case the decision boundaries will be *quadratic*

Challenges for LDA

The generative model is rarely valid

Moreover, the number of parameters to be estimated is

- class prior probabilities: K-1
- means: Kd
- covariance matrix: $\frac{1}{2}d(d+1)$

If d is small and n is large, then we can accurately estimate these parameters (provably, using Hoeffding and similar)

If n is small and d is large, then we have more parameters than observations, and will likely obtain very poor estimates

- first apply a dimensionality reduction technique to reduce d
- assume a more structured covariance matrix

Example

Structured covariance matrix:

Assume $\Sigma = \sigma^2 \mathbf{I}$ and estimate $\hat{\sigma}^2 = \frac{1}{d} \operatorname{tr}(\widehat{\Sigma})$

If K = 2 and $\hat{\pi}_0 = \hat{\pi}_1$, then LDA becomes

$$\frac{1}{\widehat{\sigma}^2} \|\mathbf{x} - \widehat{\boldsymbol{\mu}}_0\|_2^2 \underset{1}{\overset{0}{\underset{1}{\overset{1}{\sigma}^2}}} \|\mathbf{x} - \widehat{\boldsymbol{\mu}}_1\|_2^2 \longleftrightarrow \|\mathbf{x} - \widehat{\boldsymbol{\mu}}_0\|_2^2 \underset{1}{\overset{0}{\underset{1}{\overset{1}{\sigma}^2}}} \|\mathbf{x} - \widehat{\boldsymbol{\mu}}_1\|_2^2$$

 $\widehat{\mu}_{1}$ $\widehat{\mu}_{0}$

nearest centroid classifier

Another possible escape

Recall from the very beginning of the lecture that the Bayes classifier can be stated either in terms of maximizing $\pi_y f_{X|Y}(\mathbf{x}|y)$ or $\eta_y(\mathbf{x})$

In LDA, we are estimating $\pi_y f_{X|Y}(\mathbf{x}|y)$, which is equivalent to the full joint distribution of (X, Y)

All we *really* need is to be able to estimate $\eta_y(\mathbf{x})$

- we don't need to know $f_X(\mathbf{x})$

LDA commits one of the cardinal sins of machine learning:

Never solve a more difficult problem as an intermediate step

Can we do better?

Another look at plugin methods

Suppose K = 2Define $\eta(\mathbf{x}) = \eta_1(\mathbf{x})$ $= 1 - \eta_0(\mathbf{x})$

In this case, another way to express the Bayes classifier is as

$$h^{\star}(\mathbf{x}) = egin{cases} 1 & ext{if } \eta(\mathbf{x}) \geq 1/2 \ 0 & ext{if } \eta(\mathbf{x}) < 1/2 \end{cases}$$

Note that we do not actually need to know the full distribution of (X, Y) to express the Bayes classifier

All we really need is to decide if $\eta(\mathbf{x}) \geq 1/2$

Gaussian case

Suppose that
$$K = 2$$
 and that $X|Y = y \sim \mathcal{N}(\mu_y, \Sigma)$

$$\eta(\mathbf{x}) = \frac{\pi_1 \phi(\mathbf{x}; \mu_1, \Sigma)}{\pi_1 \phi(\mathbf{x}; \mu_1, \Sigma) + \pi_0 \phi(\mathbf{x}; \mu_0, \Sigma)}$$

$$= \frac{\pi_1 e^{-\frac{1}{2}(\mathbf{x}-\mu_1)^T \Sigma^{-1}(\mathbf{x}-\mu_1)}}{\pi_1 e^{-\frac{1}{2}(\mathbf{x}-\mu_1)^T \Sigma^{-1}(\mathbf{x}-\mu_1)} + \pi_0 e^{-\frac{1}{2}(\mathbf{x}-\mu_0)^T \Sigma^{-1}(\mathbf{x}-\mu_0)}}$$

$$= \frac{1}{1 + \frac{\pi_0}{\pi_1} e^{\frac{1}{2}(\mathbf{x}-\mu_1)^T \Sigma^{-1}(\mathbf{x}-\mu_1) - \frac{1}{2}(\mathbf{x}-\mu_0)^T \Sigma^{-1}(\mathbf{x}-\mu_0)}}$$

$$= \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + b)}}$$

Logistic regression

This observation gives rise to another class of plugin methods, the most important of which is logistic regression, which implements the following strategy

1. Assume
$$\eta(\mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + b)}}$$
 ($\mathbf{w} \in \mathbb{R}^d$, $b \in \mathbb{R}$)

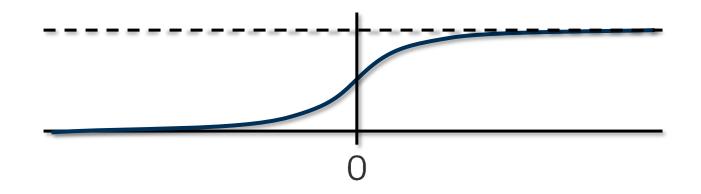
- 2. Directly estimate \mathbf{w}, b (somehow) from the data
- 3. Plug the estimate

$$\widehat{\eta}(\mathbf{x}) = rac{1}{1 + e^{-(\widehat{\mathbf{w}}^T \mathbf{x} + \widehat{b})}}$$

into the formula for the Bayes classifier

The logistic function

The function $\frac{1}{1+e^{-t}}$ is called a *logistic* function (or a *sigmoid* function in other contexts)



The logistic regression classifier

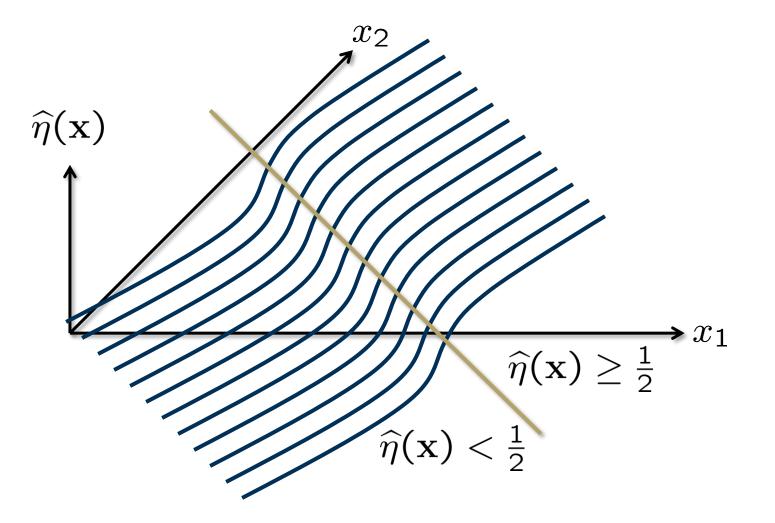
Denote the logistic regression classifier by

$$\widehat{h}(\mathbf{x}) = \mathbf{1}_{\left\{\widehat{\eta}(\mathbf{x}) \ge 1/2\right\}}(\mathbf{x})$$
Note that $\widehat{h}(\mathbf{x}) = \mathbf{1} \iff \widehat{\eta}(\mathbf{x}) \ge \frac{1}{2}$

$$\iff \frac{1}{1 + \exp\left(-(\widehat{\mathbf{w}}^T \mathbf{x} + \widehat{b})\right)} \ge \frac{1}{2}$$

$$\iff \exp\left(-(\widehat{\mathbf{w}}^T \mathbf{x} + \widehat{b})\right) \le \mathbf{1}$$

$$\iff (\widehat{\mathbf{w}}^T \mathbf{x} + \widehat{b}) \ge \mathbf{0}$$
So $\widehat{h}(\mathbf{x}) = \begin{cases} \mathbf{1} & \text{if } \widehat{\mathbf{w}}^T \mathbf{x} + \widehat{b} \ge \mathbf{0} \\ \mathbf{0} & \text{otherwise} \end{cases}$ linear classifier



Estimating the parameters

Challenge: How to estimate the parameters for

$$\eta(\mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + b)}}$$

One possibility: $\mathbf{w} = \widehat{\Sigma}^{-1} (\widehat{\mu}_1 - \widehat{\mu}_0)$
 $b = \frac{1}{2} \widehat{\mu}_0^T \widehat{\Sigma}^{-1} \widehat{\mu}_0 - \frac{1}{2} \widehat{\mu}_1^T \widehat{\Sigma}^{-1} \widehat{\mu}_1 + \log \frac{\widehat{\pi}_1}{\widehat{\pi}_0}$

Alternative: Maximum likelihood estimation

For convenience, set $\theta = (b, \mathbf{w})$

Note that $\eta(\mathbf{x})$ is really a function of both \mathbf{x} and $\boldsymbol{\theta}$, so we will use the notation $\eta(\mathbf{x}; \boldsymbol{\theta})$ to highlight this dependence

The *a posteriori* probability of our data

Suppose that we knew θ . Then we could compute

$$\mathbb{P}[y_i | \mathbf{x}_i; \boldsymbol{\theta}] = \mathbb{P}[Y_i = y_i | X_i = \mathbf{x}_i; \boldsymbol{\theta}]$$
$$= \begin{cases} \eta(\mathbf{x}_i; \boldsymbol{\theta}) & \text{if } y_i = 1\\ 1 - \eta(\mathbf{x}_i; \boldsymbol{\theta}) & \text{if } y_i = 0 \end{cases}$$

$$=\eta(\mathbf{x}_i; \boldsymbol{ heta})^{y_i}(1-\eta(\mathbf{x}_i; \boldsymbol{ heta}))^{1-y_i}$$

Because of independence, we also have that

$$\mathbb{P}[y_1, \dots, y_n | \mathbf{x}_1, \dots, \mathbf{x}_n; \boldsymbol{\theta}] = \prod_{\substack{i=1 \\ n}}^n \mathbb{P}[y_i | \mathbf{x}_i; \boldsymbol{\theta}]$$
$$= \prod_{\substack{i=1 \\ i=1}}^n \eta(\mathbf{x}_i; \boldsymbol{\theta})^{y_i} (1 - \eta(\mathbf{x}_i; \boldsymbol{\theta}))^{1-y_i}$$

Maximum likelihood estimation

We don't actually know θ , but we do know y_1, \ldots, y_n

Suppose we view y_1, \ldots, y_n to be fixed, and view $\mathbb{P}[y_1, \ldots, y_n | \mathbf{x}_1, \ldots, \mathbf{x}_n; \boldsymbol{\theta}]$ as just a function of $\boldsymbol{\theta}$

When we do this, $\mathcal{L}(\theta) = \mathbb{P}[y_1, \dots, y_n | \mathbf{x}_1, \dots, \mathbf{x}_n; \theta]$ is called the *likelihood* (or likelihood function)

The method of *maximum likelihood* aims to estimate θ by finding the θ that *maximizes* the *likelihood* $\mathcal{L}(\theta)$

In practice, it is often more convenient to focus on maximizing the *log-likelihood*, i.e., $\log \mathcal{L}(\theta)$

The log-likelihood

To see why, note that the likelihood in our case is given by

$$\mathcal{L}(oldsymbol{ heta}) = \prod_{i=1}^n \eta(\mathbf{x}_i;oldsymbol{ heta})^{y_i} (1 - \eta(\mathbf{x}_i;oldsymbol{ heta}))^{1-y_i}$$

Thus, the log-likelihood is given by

$$\ell(\theta) = \log \mathcal{L}(\theta)$$

= $\sum_{i=1}^{n} y_i \log \eta(\mathbf{x}_i; \theta) + (1 - y_i) \log(1 - \eta(\mathbf{x}_i; \theta))$
= $\sum_{i=1}^{n} y_i \theta^T \widetilde{\mathbf{x}}_i - \log(1 + e^{\theta^T \widetilde{\mathbf{x}}_i})$

$$\widetilde{\mathbf{x}} = [1, x(1), \dots, x(d)]^T \ \boldsymbol{\theta} = [b, w(1), \dots, w(d)]^T$$

Maximizing the log-likelihood

How can we maximize

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} y_i \boldsymbol{\theta}^T \widetilde{\mathbf{x}}_i - \log(1 + e^{\boldsymbol{\theta}^T \widetilde{\mathbf{x}}_i})$$

with respect to θ ?

Find a
$$\theta$$
 such that $\nabla \ell(\theta) = \begin{bmatrix} \frac{\partial \ell(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial \ell(\theta)}{\partial \theta_{d+1}} \end{bmatrix} = 0$

(i.e., compute the partial derivatives and set them to zero)

Computing the gradient

It is not too hard to show that

$$egin{split}
abla \ell(oldsymbol{ heta}) &= \sum_{i=1}^n
abla \left(y_i oldsymbol{ heta}^T \widetilde{\mathbf{x}}_i - \log(1 + e^{oldsymbol{ heta}^T \widetilde{\mathbf{x}}_i})
ight) \ &= \sum_{i=1}^n \widetilde{\mathbf{x}}_i \left(y_i - rac{1}{1 + e^{-oldsymbol{ heta}^T \widetilde{\mathbf{x}}_i}}
ight) = 0 \end{split}$$

This gives us d + 1 equations, but they are *nonlinear* and have no closed-form solution

How can we solve this problem?

Optimization

Throughout signal processing and machine learning, we will very often encounter problems of the form

 $\underset{\mathbf{x} \in \mathbb{R}^{d}}{\mathsf{minimize}} f(\mathbf{x})$

(or minimize $-\ell(\theta)$ for today)

In many (most?) cases, we cannot compute the solution simply by setting $\nabla f(\mathbf{x}) = 0$ and solving for \mathbf{x}

However, there are many powerful *algorithms* for finding x using a computer