
Returning to classification

Consider             where

• is a random vector in

• is a random variable (depending on    )

Let                                            be a classifier

with probability of error/risk given by

The Bayes classifier (denoted     ) is the optimal classifier, i.e., the classifier 

with smallest possible risk

We can calculate this explicitly if we know the joint distribution of 



The Bayes classifier

Theorem

The classifier                                          satisfies

for any possible classifier    

Recall:

We can equivalently write

where



Generative models and plug-in methods

The Bayes classifier requires knowledge of the joint distribution of             

In learning, all we have is the training data

A generative model is an assumption about the unknown distribution

– usually very simplistic

– often parametric

– build classifier by estimating the parameters via training data

– plug the result into formula for Bayes classifier

▪ “plug-in” methods



Linear discriminant analysis (LDA)

In linear discriminant analysis (LDA), we make a (strong) assumption that

for 

Here                 is the multivariate Gaussian/normal distribution with mean     and 

covariance matrix

Note: Each class has the same covariance matrix



Parameter estimation

In LDA, we assume that the prior probabilities     , the mean vectors      , and the 

covariance matrix      are all unknown 

To estimate these from the data, we use  

“pooled covariance estimate”



Resulting classifier

The LDA classifier is then

squared Mahalanobis distance

between    and    



Example

Suppose that

It turns out that by setting

we can re-write this as linear classifier



Example

Recall that the contour                                       is an ellipse

picture assumes



Linear classifiers

In general, why does                        describe a linear classifier?



When is LDA appropriate?



When is LDA appropriate?



When is LDA appropriate?



When is LDA appropriate?



When is LDA appropriate?



More than two classes

The decision regions are convex polytopes 

(intersections of linear half-spaces)



Quadratic discriminant analysis (QDA)

What happens if we expand the generative model to

for                               ? 

Set 

Proceed as before, only this case the decision boundaries will be quadratic



Example



Challenges for LDA

The generative model is rarely valid

Moreover, the number of parameters to be estimated is

• class prior probabilities: 

• means:

• covariance matrix:

If    is small and    is large, then we can accurately estimate these parameters 

(provably, using Hoeffding and similar)

If    is small and    is large, then we have more parameters than observations, and 

will likely obtain very poor estimates 

– first apply a dimensionality reduction technique to reduce

– assume a more structured covariance matrix



Example

Structured covariance matrix:

Assume                 and estimate 

If              and               , then LDA becomes

nearest centroid

classifier



Another possible escape

Recall from the very beginning of the lecture that the Bayes classifier can be 

stated either in terms of maximizing or

In LDA, we are estimating                     , which is equivalent to the full joint 

distribution of 

All we really need is to be able to estimate          

– we don’t need to know

LDA commits one of the cardinal sins of machine learning:

Never solve a more difficult problem

as an intermediate step

Can we do better?



Another look at plugin methods

Suppose            

Define

In this case, another way to express the Bayes classifier is as

Note that we do not actually need to know the full distribution of             to 

express the Bayes classifier 

All we really need is to decide if



Gaussian case

Suppose that               and that



Logistic regression

This observation gives rise to another class of plugin methods, the most important 

of which is logistic regression, which implements the following strategy

1. Assume                                          (             ,          )

2. Directly estimate          (somehow) from the data

3. Plug the estimate                                        

into the formula for the Bayes classifier



The logistic function

The function          is called a logistic function (or a sigmoid function in other 

contexts)



The logistic regression classifier

Denote the logistic regression classifier by

Note that

So linear classifier



Example



Estimating the parameters

Challenge: How to estimate the parameters for

One possibility:

Alternative: Maximum likelihood estimation

For convenience, set

Note that          is really a function of both     and   , so we will use the notation              

to highlight this dependence



The a posteriori probability of our data

Suppose that we knew   .  Then we could compute

Because of independence, we also have that



Maximum likelihood estimation

We don’t actually know , but we do know 

Suppose we view                  to be fixed, and view

as just a function of

When we do this,                                                         is called the likelihood (or 

likelihood function)

The method of maximum likelihood aims to estimate     by finding the    that 

maximizes the likelihood

In practice, it is often more convenient to focus on maximizing the log-likelihood, 

i.e., 



The log-likelihood

To see why, note that the likelihood in our case is given by

Thus, the log-likelihood is given by



Maximizing the log-likelihood

How can we maximize

with respect to    ?

Find a     such that

(i.e., compute the partial derivatives and set them to zero)



Computing the gradient

It is not too hard to show that

This gives us            equations, but they are nonlinear and have no closed-form 

solution

How can we solve this problem?



Optimization

Throughout signal processing and machine learning, we will very often encounter 

problems of the form

(or                             for today)

In many (most?) cases, we cannot compute the solution simply by setting                      

and solving for

However, there are many powerful algorithms for finding using a computer  
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