
Linear discriminant analysis

Linear discriminant analysis (LDA) is a common “plug-in”
method for classification which operates by estimating πkfX|Y (x|k)
for each class k = 0, . . . , K − 1 and then simply plugging these into
the formula for the Bayes classifier in order to make a decision. In
LDA we make the (strong) assumption that class conditional pdfs
are given by the multivariate normal distribution, but with differing
means. Mathematically, this corresponds to the assumption that

fX|Y (x|k) =
1

(2π)d/2|Σ|1/2
e−

1
2(x−µk)

TΣ−1(x−µk)

for k = 0, . . . , K − 1. Note that under this assumption, each class
has a distinct mean µk, but all classes share the same covariance
matrix Σ.

In LDA, we assume that µ0, . . . ,µK−1 and Σ, as well as the prior
probabilities π0, . . . , πK−1 are all unknown, but can be estimated
from the data. In particular, we can use the estimates

π̂k =
|{i : yi = k}|

n

µ̂k =
1

|{i : yi = k}|
∑
i:yk=k

xi

Σ̂ =
1

n

K−1∑
k=0

∑
i:yi=k

(xi − µ̂k)(xi − µ̂k)
T .

The LDA classifier is then defined by

ĥ(x) = argmax
k

π̂k ·
1

(2π)d/2|Σ̂|1/2
e−

1
2(x−µ̂k)

T Σ̂
−1

(x−µ̂k).
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Since the log is a monotonic transformation (meaning that if x > y
then log(x) > log(y)), we can equivalently state the classifier as

ĥ(x) = argmax
k

log (π̂k) + log

(
1

(2π)d/2|Σ̂|1/2
e−

1
2(x−µ̂k)

T Σ̂
−1

(x−µ̂k)

)
= argmax

k
log (π̂k)−

1

2
(x− µ̂k)

TΣ̂
−1
(x− µ̂k)

= argmin
k

1

2
(x− µ̂k)

TΣ̂
−1
(x− µ̂k)− log (π̂k)

where the second equality above follows from the fact that

log

(
1

(2π)d/2|Σ̂|1/2

)

is constant across all k and so does not affect which k maximizes the
expression.

It is enlightening to consider what happens in the special case of
K = 2 (i.e., binary classification). In this case, LDA results in a

classifier such that ĥ(x) = 1 when

(x−µ̂0)
TΣ−1(x−µ̂0)−2 log π̂0 ≥ (x−µ̂1)

TΣ−1(x−µ̂1)−2 log π̂1.

We can rewrite this as

(x− µ̂0)
TΣ−1(x− µ̂0)− (x− µ̂1)

TΣ−1(x− µ̂1) + 2 log
π̂1

π̂0

≥ 0.

Using the fact that Σ is symmetric, which implies that we have
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(Σ−1)T = Σ−1, we can simplify this rule to

0 ≤ (x− µ̂0)
TΣ−1(x− µ̂0)− (x− µ̂1)

TΣ−1(x− µ̂1) + 2 log
π̂1

π̂0

= xTΣ−1x− 2µ̂T
0Σ

−1x + µ̂T
0Σ

−1µ̂0

−
(
xTΣ−1x− 2µ̂T

1Σ
−1x + µ̂T

1Σ
−1µ̂1

)
+ 2 log

π̂1

π̂0

= 2(µ̂T
1 − µ̂T

0 )Σ
−1x + µ̂T

0Σ
−1µ̂0 − µ̂T

1Σ
−1µ̂1 + 2 log

π̂1

π̂0

= (Σ−1(µ̂1 − µ̂0))
Tx +

1

2
µ̂T

0Σ
−1µ̂0 −

1

2
µ̂T

1Σ
−1µ̂1 + log

π̂1

π̂0

.

Thus, if
w = Σ−1(µ̂1 − µ̂0)

and

b =
1

2
µ̂T

0Σ
−1µ̂0 −

1

2
µ̂T

1Σ
−1µ̂1 + log

π̂1

π̂0

,

we can re-write this as

wTx + b ≥ 0.

This is the expression of a simple linear classifier, and thus LDA will
always result in a linear classifier.
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Logistic regression

The key idea behind (binary) logistic regression is to assume that
η1(x) is of the form

1

1 + exp(−(w⊺x + b))
= 1− η0(x),

and to directly estimate w and b from the data. Since the func-
tion f (x) = 1

1+e−x is called the logistic function, the corresponding
classifier inherited the name and is defined as

ĥ(x) =

{
1 if η1(x) ≥ 1

2
,

0 if η1(x) <
1
2
,

=

{
1 if ŵ⊺x + b̂ ≥ 0

0 if ŵ⊺x + b̂ < 0.

This is again a linear classifier. Note that LDA led to a similar
classifier with the specific choice of parameters

ŵ = Σ̂
−1
(µ̂1 − µ̂0) b =

1

2
µ̂⊺

0Σ̂
−1
µ̂0 −

1

2
µ̂⊺

1Σ̂
−1
µ̂1 + log

π̂1

π̂0

This is not what is done in logistic regression. Instead, in logistic
regression we directly compute the maximum likelihood estimates of
the parameters w and b.

Specifically, to analyze the MLE, we start with a standard trick to
simplify notation, which consists in defining x̃ = [1, x⊺]⊺ and θ =
[bw⊺]⊺. This allows us to write the logistic model as

η(x) = η1(x) =
1

1 + exp(−θ⊺x̃)
.
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To avoid carrying a tilde repeatedly in our notation, we will now
simply write x in place of x̃, but keep in mind that we operate
under the assumption that the first component of x is set to one.

Given our dataset {(xi, yi)}ni=1 the likelihood isL(θ) =
∏n

i=1 P [yi|xi;θ],
where we do not try to model the distribution of xi. For K = 2 and
Y = {0, 1}, we obtain

L(θ) =
n∏

i=1

η(xi)
yi(1− η(xi))

1−yi

In case you are not familiar with this way of writing the likelihood,
note that

η(xi)
yi(1− η(xi))

1−yi =

{
η(xi) = η1(xi) if yi = 1

(1− η(xi)) = η0(xi) if yi = 0.

The log likelihood can therefore be written as

ℓ(θ) = logL(θ) =
n∑

i=1

(yi log η(xi) + (1− yi) log(1− η(xi)))

=
n∑

i=1

(
yi log

1

1 + e−θ⊺x
+ (1− yi) log

e−θ⊺x

1 + e−θ⊺x

)

=
n∑

i=1

(
yiθ

⊺xi − log(1 + eθ
⊺xi)
)
.

To find the minimum with respect to θ, a necessary condition for
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optimality is ∇θℓ(θ) = 0. Here, this means that

∇θℓ(θ) =
n∑

i=1

(
yixi −

eθ
⊺xi

1 + eθ
⊺xi
xi

)

=
n∑

i=1

xi

(
yi −

1

1 + e−θ⊺xi

)
= 0.

Solving this equation means solving a nonlinear system of d+1 equa-
tions, for which there exists no clear methodology. Hence, we must
resort to a numerical algorithm to find the solution of arg minθ −ℓ(θ).

You should check for yourself −ℓ(θ) is convex in θ, and there exists
algorithms with provable convergence guarantees. We will mention a
few specific techniques, such as gradient descent, Newton’s method,
but there are many more that especially useful in high dimension.
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