Linear discriminant analysis

Linear discriminant analysis (LDA) is a common “plug-in”
method for classification which operates by estimating 7, fxy (x|k)
for each class £ =0,..., K — 1 and then simply plugging these into
the formula for the Bayes classifier in order to make a decision. In
LDA we make the (strong) assumption that class conditional pdfs
are given by the multivariate normal distribution, but with differing
means. Mathematically, this corresponds to the assumption that
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for k =0,..., K — 1. Note that under this assumption, each class
has a distinct mean p,, but all classes share the same covariance
matrix 3J.

In LDA, we assume that p,, ..., p, , and 3, as well as the prior
probabilities m,...,mx_1 are all unknown, but can be estimated
from the data. In particular, we can use the estimates
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The LDA classifier is then defined by
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Since the log is a monotonic transformation (meaning that if z > y
then log(x) > log(y)), we can equivalently state the classifier as
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where the second equality above follows from the fact that
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1s constant across all k and so does not affect which k£ maximizes the
expression.

It is enlightening to consider what happens in the special case of
K = 2 (ie., binary classification). In this case, LDA results in a

classifier such that h(x) = 1 when
(@ — 1) 2 (@ — f1y) —2log o > (@ — ;)" 2 (@ — 1) —2log 7y.

We can rewrite this as
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Using the fact that 3 is symmetric, which implies that we have
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(71T = 7", we can simplify this rule to
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we can re-write this as
wlx+b>0.

This is the expression of a simple linear classifier, and thus LDA will
always result in a linear classifier.
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Logistic regression

The key idea behind (binary) logistic regression is to assume that
ni(z) is of the form

1
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and to directly estimate w and b from the data. Since the func-
tion f(x) = 5 +1€_x is called the logistic function, the corresponding
classifier inherited the name and is defined as

~ 1 if my(x) > 1,
0 ifm(x) <3,

1 if@Te4+b>0
|0 if@wTe+b<0.

This is again a linear classifier. Note that LDA led to a similar
classifier with the specific choice of parameters
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This is not what is done in logistic regression. Instead, in logistic
regression we directly compute the maximum likelihood estimates of
the parameters w and b.

Specifically, to analyze the MLE, we start with a standard trick to
simplify notation, which consists in defining & = [1, 27T and 8 =
[bawT|T. This allows us to write the logistic model as

B 1
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n(x) =m(x)
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To avoid carrying a tilde repeatedly in our notation, we will now
simply write  in place of &, but keep in mind that we operate
under the assumption that the first component of @ is set to one.

Given our dataset {(x;, y;) }1-, the likelihood is £(0) = [, P [y:|x;; 0],
where we do not try to model the distribution of a;. For K = 2 and
Y = {0, 1}, we obtain

Hn )1 = n(x) ™"

In case you are not familiar with this way of writing the likelihood,
note that
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The log likelihood can therefore be written as

n
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To find the minimum with respect to @, a necessary condition for
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optimality is V(@) = 0. Here, this means that
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Solving this equation means solving a nonlinear system of d+ 1 equa-
tions, for which there exists no clear methodology. Hence, we must
resort to a numerical algorithm to find the solution of arg min, —¢(6).

You should check for yourself —¢(0) is convex in 0, and there exists
algorithms with provable convergence guarantees. We will mention a
few specific techniques, such as gradient descent, Newton’s method,
but there are many more that especially useful in high dimension.
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