
Derivation of Principal Components Analysis

Given a set of data points x1, . . . ,xn ∈ Rd, we want to find the linear
subspace (plus an affine offset) that is the best fit in the least-squares
sense. Mathematically, we want to solve

minimize
µ,A,{zi}

n∑
i=1

∥xi − µ−Azi∥22, subject to ATA = I,

where µ ∈ Rd, zi ∈ Rk, and A is a d × k matrix; the constraint
ATA = I means that we will considerA with orthonormal columns.

Minimizing the expression above over the {zi} and µ is straightfor-
ward. For the {zi}, suppose that A and µ are fixed. Then we have
a series of n decoupled least-squares problems: for i = 1, . . . , n, we
solve

minimize
zi

∥xi − µ−Azi∥22

This is a standard unconstrained least-squares problem that has so-
lution

ẑi = (ATA)−1AT(xi − µ) = AT(xi − µ),

where the second equality follows from ATA = I . With A still
fixed, we solve for µ by plugging in our expression for the zi:

minimize
µ

n∑
i=1

∥xi − µ−AAT(xi − µ)∥22,

=
n∑

i=1

∥(I −AAT)(xi − µ)∥22,

=
n∑

i=1

(xi − µ)T(I −AAT)(xi − µ),
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where the last step comes from expanding out the norm squared as
an inner product, and using the fact that (I −AAT) is a projector;
it is symmetric, and (I−AAT)2 = (I−AAT). Taking the gradient
of the expression above and setting it to zero means that µ̂ will obey

0 = −2
n∑

i=1

(I −AAT)(xi − µ̂)

= −2(I −AAT)

(
n∑

i=1

xi − nµ̂

)
.

This can be satisfied by taking

µ̂ =
1

n

n∑
i=1

xi.

Note that this is not the only choice for µ — any choice that puts∑
ixi − nµ into the column space of A will work. But the choice

above is intuitive, so we will go with it.

With {ẑi} and µ̂ solved for, we now optimize over A. We want to
solve

minimize
A∈Rn×k

n∑
i=1

∥xi − µ̂−AAT(xi − µ̂)∥22 subject to ATA = I.

We will assume, without loss of generality, that µ̂ = 0, as we could
simply use the variable substitution x̃i = xi−µ̂ above. The program
becomes

minimize
A∈Rn×k

n∑
i=1

∥(I −AAT)xi∥22 subject to ATA = I.
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Expanding the functional, and again using the fact that (I −AAT)
is a projector,

n∑
i=1

∥(I −AAT)xi∥22 =
n∑

i=1

xT
i (I −AAT)xi

=
n∑

i=1

xT
i xi − xT

i AATxi.

The first term does not depend on A, and the second term is always
negative, so our problem is equivalent to

maximize
A∈Rn×k

n∑
i=1

xT
i AATxi subject to ATA = I.

For any vector v, it is easy to see that ∥v∥22 = trace(vvT). Thus,
the objective function above can also be written as

n∑
i=1

xT
i AATxi =

n∑
i=1

∥ATxi∥22

=
n∑

i=1

trace(ATxix
T
i A)

= trace

(
AT

(
n∑

i=1

xix
T
i

)
A

)
= trace(ATSA),

where S =
∑n

i=1xix
T
i is a scaled version of the sample covariance

matrix.

By construction, S is symmetric positive semi-definite, so it has
eigenvalue decomposition

S = UΛUT,
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where U is a d × d orthonormal matrix, UTU = UUT = I , and
Λ = diag({λi}), with λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. Then

trace(ATSA) = trace(ATUΛUTA) = trace(W TΛW ),

where W = UTA. Notice that W also has orthonormal columns,
as W TW = ATUUTA = ATA = I . So we can solve the program

maximize
W∈Rn×k

trace(W TΛW ) subject to W TW = I,

and then take Â = UŴ .

We can show that the last maximization program above is equivalent
to a simple linear program that we can solve by inspection. Let
w1, . . . ,wk be the columns of W . Then

trace(W TΛW ) =
k∑

i=1

wT
i Λwi

=
k∑

i=1

d∑
j=1

wi(j)
2λj

=
d∑

j=1

hjλj, hj =
k∑

i=1

wi(j)
2 =

k∑
i=1

W (i, j)2.

The hj, j = 1, . . . , d above are the sums of the squares of the rows
of W . It is clear that hj ≥ 0. It is also true that

d∑
j=1

hj = k,

as the fact that the norm of each columns of W is 1 means that
d∑

j=1

k∑
i=1

W (i, j)2 =
k∑

i=1

(
d∑

j=1

W (i, j)2
)

=
k∑

i=1

1 = k.
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Finally, it is also true that hj ≤ 1. Here is why: since the columns of
W are orthonormal, they can be considered as part of an orthonor-
mal basis for all of Rd. That is, there is a (and actually there are
many) d× (d− k) matrix W 0 such that the columns of

W ′ =
[
W W 0

]
form an orthonormal basis for Rd. Since W ′ is square, W ′W

′T = I ,
meaning the sum of the squares of each row are equal to 1. Thus

hj =
k∑

i=1

W (i, j)2 ≤
d∑

i=1

W ′(i, j)2 = 1.

With these constraints on the hj, let’s see how large we can make
the quantity of interest:

maximize
h∈Rd

d∑
j=1

hjλj subject to
d∑

j=1

hj = k, 0 ≤ hj ≤ 1.

This is a linear program, but we can intuit the answer. Since all of the
λj are positive, we want to have their weights (i.e., the hj) as large
as possible for the largest entries. Since the weights are constrained
to be less than 1, and their sum is k, this simply means we assign a
weight of 1 to the k largest terms, and 0 to the others:

ĥj =

{
1, j = 1, . . . , k,

0, otherwise.

This means that the sum of the squares of the entries in the rows of
the corresponding Ŵ are 1 for the first k, and zero below — there
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are many matrices with orthonormal columns which fit the bill, but
a specific one which does is

Ŵ =

[
Ik×k

0(d−k)×k

]
. (1)

Taking Â = UŴ , this results in

Â =
[
u1 u2 · · · uk

]
,

where the ui above are the first k columns of U .

PCA Theorem

minimize
µ,A,{zi}

n∑
i=1

∥xi − µ−Azi∥22, subject to ATA = I,

has solution

µ̂ =
1

n

n∑
i=1

xi, Â =
[
u1 · · · uk

]
, ẑi = Â

T
(xi − µ̂),

where u1, . . . ,uk are the eigenvectors corresponding to the k
largest eigenvalues of

S =
n∑

i=1

xix
T
i .

Note that our analysis above shows that the choice ofA is not unique
— we are really choosing the subspace spanned by the columns of
A, and do not care which orthobasis we use to span it. In the end,
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taking Â
′
= ÂQ, for any k × k orthonormal matrix Q would also

work, as

Â
′
Â

′T
= ÂQQTÂ

T
= ÂÂ

T
.

In our choice for Ŵ in (1) above, we would take

Ŵ =

[
Q

0(d−k)×k

]
,

which also meets the constraints dictated by the ĥj — the sum of
the squares of the entries in the rows if 1 for the first k, zero for the
last d− k, and the columns are orthonormal.
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The LASSO for feature selection

Dimensionality reduction (using something like PCA) is one com-
mon approach to mitigate the risk of overfitting. In the context of
regression, another popular approach to mitigating this risk is called
the LASSO. In this setting, we will use the squared-error loss along
with F as the set of linear (plus offset) functions on Rd:

L(f (xi), yi) = (yi − βTxi − β0)
2 = (yi − θTx̃i)

2,

where

θ =

[
β0

β

]
, x̃i =

[
1
xi

]
.

Stacking the x̃T
i up as rows of a n× (d+1) matrix A and collecting

the yi into a single vector,

A =


1 xT

1

1 xT
2

... ...
1 xT

n

 , y =


y1
y2
...
yn


we can write

n∑
i=1

L(f (xi), yi) = ∥y −Aθ∥22.

For the penalty, we use the sum of the absolute values of the entries
in θ:

r(f ) =
d+1∑
i=1

|θ(i)| = ∥θ∥1.
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Our optimization program is now1

(LASSO) minimize
θ

1

2
∥y −Aθ∥22 + λ∥θ∥1.

This regression technique is commonly referred to as the LASSO.

The motivation for using the ℓ1 norm as a regularizer is that doing
so tends to produce θ which have a small number of non-zero terms.
This is certainly true in practice, and we can do a little bit of analysis
that explains why.

Specifically, we can show that there is a solution to (LASSO) above
that has at most n non-zero entries using a relatively simple argu-
ment. Let θ be any vector with more than n non-zero terms in
it:

nnz(θ) := #{i : θ(i) ̸= 0} ≥ n + 1.

Then at least one of the following is true:

1. There is another θ′ ∈ Rd+1 such that nnz(θ′) ≤ nnz(θ) and

1

2
∥y −Aθ′∥22 + λ∥θ′∥1 <

1

2
∥y −Aθ∥22 + λ∥θ∥1,

or

2. there is another θ′ ∈ Rd+1 such that nnz(θ′) < nnz(θ) and

1

2
∥y −Aθ′∥22 + λ∥θ′∥1 =

1

2
∥y −Aθ∥22 + λ∥θ∥1.

Given θ as above, let Γ be the locations of the non-zero terms in θ:

Γ = {i : θ(i) ̸= 0}.
1We have introduced the factor of 1/2 in front of the loss simply for conve-
nience and consistency with the literature.

9
Georgia Tech ECE 6254 Spring 2024; Notes by M. Bloch, M. A. Davenport, and J. Romberg. Last updated 9:47, February 28, 2024



We are supposing that |Γ| ≥ n + 1. Since |Γ| is greater than the
number of rows in A, there is at least one vector z that is also
supported on Γ,

z(i) = 0, for i ̸∈ Γ,

such that αz ∈ Null(A) for all α ∈ R. We will show that by adding
a little bit of z to θ, we can hold the ℓ2 loss term constant while either
decreasing the ℓ1 regularization term or driving one of the non-zero
terms to zero. Notice that

∥y −A(θ + ϵz)∥22 = ∥y −Aθ∥22
for all ϵ > 0, since z ∈ Null(A).

Now let sθ be the vector supported on Γ that contains the signs of
the non-zero entries of θ:

sθ(i) =

{
sign(θ(i)), i ∈ Γ

0, i ̸∈ Γ
.

We consider two cases: sT
θ z ̸= 0 and sT

θ z = 0.

First, suppose that sT
θ z ̸= 0. Without loss of generality, we can

assume that sT
θ z < 0, as otherwise we can just replace z with −z

(since both of these are supported on Γ and are in the nullspace of
A). Notice that we can write

∥θ∥1 =
d+1∑
i=1

|θ(i)| =
d+1∑
i=1

sign(θ(i))θ(i)

For ϵ > 0 small enough, it is a fact that

sign(θ(i) + ϵz(i)) = sign(θ(i)), for all i ∈ Γ,
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and so

∥θ + ϵz∥1 =
d+1∑
i=1

sign(θ(i) + ϵz(i))(θ(i) + ϵz(i))

=
d+1∑
i=1

sign(θ(i))(θ(i) + ϵz(i))

= ∥θ∥1 + ϵsT
θ z

< ∥θ∥1.

Thus, taking θ′ = θ + ϵz for a small enough value of ϵ > 0 gives a
vector with a smaller functional value, so θ cannot be a solution to
(LASSO).

Now suppose that sT
θ z = 0. Then

∥θ∥1 = ∥θ + ϵz∥1

as long as θ+ ϵz remains non-zero on Γ. But there must be at least
one i ∈ Γ such that

sign(θ(i)) ̸= sign(z(i)),

otherwise the inner product could not be equal to zero. Let i′ be
the index that obeys the condition above such that θ(i) is smallest
relative to z(i):

i′ = argmin
i∈Γ

{|θ(i)|
|z(i)|

: sign(θ(i)) ̸= sign(z(i))

}
.

Then

θ′ = θ +
|θ(i′)|
|z(i′)|

z,
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will be exactly equal to zero at i′ and will still be non-zero outside of
Γ. Thus

nnz(θ′) < nnz(θ),

while
1

2
∥y −Aθ′∥22 + λ∥θ′∥1 =

1

2
∥y −Aθ∥22 + λ∥θ∥1.

The LASSO as a quadratic program

Unlike standard least-squares, or least-squares with Tikhonov regu-
larization, the solution to the LASSO does not have a closed form.
We can, however, write it as a convex quadratic program with linear
inequality constraints. This puts it in the same class of optimization
program as SVMs.

The main idea is to introduce slack variables that allow us to re-write
the ℓ1 norm, which is piecewise linear, as a linear function subject
to linear constraints. In particular, the solution to the LASSO is
exactly the same as the solution to

minimize
θ,u

1

2
∥y −Aθ∥22 + λ

d+1∑
i=1

u(i)

subject to − u(i) ≤ θ(i) ≤ u(i), i = 1, . . . , d + 1.

This is the same as solving

minimize
θ,u

1

2
∥y −Aθ∥22 + λ

d+1∑
i=1

u(i)

subject to θ − u ≤ 0

− θ − u ≤ 0,
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which is the same as solving

minimize
z∈R2d+2

1

2
zTPz + cTz subject to Rz ≤ 0,

where

z =

[
θ
u

]
, P =

[
ATA 0
0 0

]
, c =

[
−ATy
λ1

]
, R =

[
I −I
−I −I

]
.
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General approach to regression

We now describe a more general framework for thinking about re-
gression. Recall that we observe (x1, y1), . . . , (xn, yn), with xi ∈ Rd

and yi ∈ R, and our goal is to estimate a function h(x) : Rd → R.
We can fit this function by trading off two factors:

1. Data Fidelity. Our solution should satisfy

h(xi) ≈ yi, for i = 1, . . . , n

This is typically quantified using a loss function, which pe-
nalizes the deviations of h(xi) from yi. This typically has the
form of a single scalar function that is applied to each data
point and then added up:

Loss(h, {xi}ni=1, {yi}ni=1) =
n∑

i=1

L(h(xi), yi)

So far we have focused exclusively on the squared-error loss
function:

L(h(xi), yi) = (yi − h(xi))
2.

2. Modeling and Regularization. We can temper the re-
gression function in one of two ways. The first is to simply
restrict it to lying in some function class H. We then solve

minimize
h∈H

n∑
i=1

L(h(xi), yi).

For example, we might consider the set of linear functions:

F = {h : h(x) = βTx + β0 for some β ∈ Rd, β0 ∈ R}.
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The problem of estimating the function h : Rd → R is now
distilled down to the problem of estimating β and β0.

There are of course trade-offs in choosing H. A larger H gives
us a richer class of functions to choose from, but we run the
risk of overfitting — the empirical risk 1

n

∑n
i=1L(hD(xi, yi))

might be very different than the true risk E[L(hD(X), Y )] of
our choice hD.

The second way to mitigate the danger of overfitting is to use a
large, rich set H, but then have some penalty on the complex-
ity of the choices of h inside of this class. This “complexity”
is quantified using a regularization function r(h) — there are
many choices of r we might consider. We then solve

minimize
h∈H

n∑
i=1

L(h(xi), yi) + λ r(h),

where λ ≥ 0 is a user-specified parameter that controls the
balance between these two terms.

We have seen two main variants of regularization (based on the ℓ2 and
ℓ1 norms), but have only considered the squared error loss. There
are many other possible choices of loss functions. Three that are
particularly noteworthy in the context of regression are:

� the mean absolute error LAE(r) = |r|;

� the Huber loss LH(r) =

{
1
2
r2 if |r| ≤ c

c |r| − c2

2
else

;

� the ϵ-insensitive loss Lϵ(r) =

{
0 if |r| ≤ ϵ

|r| − ϵ else
.

These losses are illustrated in Fig. 1. All of these loss functions
are somewhat more robust to “outliers”, in that they place less of a
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penalty on having a few large prediction errors, provided that there
are not too many of them. This is often a very useful property.

r

Loss

LAE(r)

cc

LH(r)

ϵ−ϵ

Lϵ(r)

Figure 1: Illustration of loss functions
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