
Regression recap

Recall that in regression we are given training data

where              and

In linear regression we assume that we are trying to estimate a function of the 

form

where             ,

Least squares regression: Select           to minimize



Least squares regression

Minimizer given by

provided that           is nonsingular



Regularization and regression

Overfitting occurs as

In this regime, we have too many degrees of freedom, and it becomes likely that             

will be (approximately) singular

Idea: penalize candidate solutions that are “too big”

One candidate regularizer:

is a “tuning parameter” that controls the tradeoff between fit and 

complexity



Do we have any other options?

What do we do if            ?

Sometimes 

• our data is extremely high-dimensional

• the training data is very expensive to acquire/label

In such settings, we have some additional strategies:

Dimensionality reduction

Feature selection



Dimensionality reduction

We observe data

The goal of dimensionality reduction is to transform these inputs to new variables

where             in such a way that preserves information

Dimensionality reductions serves two main purposes:

• Helps (many) algorithms to be more computationally efficient

• Helps prevent overfitting (a form of regularization), especially when



Curse
of

Dimensionality



Curse of dimensionality

As the dimensionality of our feature space grows, the volume of the space 

increases…

A lot…

In learning, this often translates to requiring exponentially more data in order for 

the results to be reliable

Example: With binary features, how much data do we need to have at least one 

example of every possible combination of features?



Principal component analysis (PCA)

• Unsupervised

• Linear

• Loss criteria: Sum of squared errors

The idea behind PCA is to find an approximation

where

•

• with orthonormal columns

•



Example

From Chapter 14 of Hastie, Tibshirani, and Friedman



Derivation of PCA

Mathematically, we can define          and                  as the solution to 

The hard part of this problem is finding       

Given    , it is relatively easy to show that



Determining 

Suppose          are fixed.  We wish to minimize

Claim: We must have 

Why?

Determining     is just standard least-squares regression



Determining 

Setting                                and still supposing     is fixed, our problem reduces to 

minimizing



Determining 

Taking the gradient with respect to     and setting this equal to zero, we obtain

The choice of     is not unique, but the easy (and standard) way to ensure this 

equality holds is to set 



Determining 

It remains to minimize

with respect to 

For convenience, we will assume that            , since otherwise we could just 

substitute

In this case the problem reduces to minimizing   



Determining 

Expanding this out, we obtain

Thus, we can instead focus on maximizing 



Determining 

Note that for any vector   , we have

Thus, we can write 

                   

                           is a scaled version of the empirical covariance matrix, 

sometimes called the scatter matrix



Determining 

The problem of determining     reduces to the optimization problem

Analytically deriving the optimal      is not too hard, but is a bit more involved 

than you might initially expect 

(especially if you already know the answer)

We will provide justification for the solution for the            case – the general 

case is proven in the supplementary notes   



One-dimensional example

Consider the optimization problem

Form the Lagrangian

Take the gradient and set it equal to zero

Take     to be the eigenvector of     corresponding to the maximal eigenvalue

must be an eigenvector of 



The general case

For general values of   , the solution is obtained by computing the 

eigendecomposition of    :

where     is an orthonormal matrix with columns                    and 

where 



The general case

The optimal choice of      in this case is given by

i.e., take the top     eigenvectors of   

Terminology

• principal component transform:

• principal component: 

• principal eigenvector: 



Connection to SVD

Recall the singular value decomposition (SVD)

If     is a real           matrix

• is a           orthonormal matrix

• is an            orthonormal matrix

• is a            diagonal matrix where                          and 

The principal eigenvectors are the first     columns of      when the columns of      

are filled with

singular value

square root of       eigenvalue of 



Visual interpretation



Practical matters

It is customary to center and scale a data set so that it has zero mean and unit 

variance along each feature

This puts all features on an “equal playing field”

These steps may be omitted when

• The data are known to be zero mean

• The data are known to have comparable units of measurement

To select   , we typically choose it to be large enough so that

is sufficiently small



When to use PCA

• When the data form a single “point cloud” in space

• When the data are approximately Gaussian, or some other “elliptical” 

distribution

• When low-rank subspaces capture most of the variation

Later in the course we will learn about several alternative approaches to 

dimensionality reductions when these assumptions fail to hold



Feature selection

PCA and similar dimensionality reduction strategies can be very powerful but also 

have some significant drawbacks:

• Notice that they are completely unsupervised, meaning that they do not use    

to aid in constructing a good set of features

• The learned features are often extremely difficult to interpret

Can we instead simply select a subset of the existing features?



The LASSO

LASSO

Can also be stated in a constrained form

For Tikhonov, we have a closed form solution, but LASSO requires solving an 

optimization problem using numerical methods

Note: Just like in ridge regression, in practice we may just want to penalize the 

elements of     (not      )



Sparsity and the LASSO

One can show (see supplemental notes) that if we have a data set of size    , then 

the solution to the LASSO      will have at most     nonzeros (for any possible 

dataset /    )

This is a nice property when            , since in this setting we are very susceptible 

to overfitting

– fewer observations than unknowns 

– has nontrivial nullspace

– we can achieve              , with infinitely many different choices of    and no obvious 

way to know which one is best

– limiting the number of nonzeros addresses this problem

In practice, the number of nonzeros is usually much smaller than    



Tikhonov versus least squares

Assume             and that      has orthonormal columns

Tikhonov regularization is equivalent to shrinking the least squares solution 

towards the origin 



Tikhonov versus least squares

In general, we have this picture

Tikhonov regularization still shrinking the least squares solution, but weighting

different dimensions more heavily



Lasso versus least squares

For the LASSO we tend to get something like this…

LASSO still shrinking the least squares solution towards the origin, but now in a 

way that promotes sparsity (especially in high-dimensions) 



A general approach to regression

Least squares, ridge regression, and the LASSO call all be viewed as particular 

instances of the following general approach to regression

• , often called the loss function, enforces data fidelity

• is a regularizer which serves to quantify the “complexity” of 

We have seen some examples of regularizers, what about other loss functions?



Outliers in regression

The squared error loss function is sensitive to outliers

If                   is small, then                        is not too large

But if                   is big, then                         is really big

Normally this is not a bad property – we want to penalize big errors – but this can 

make us very sensitive to large outliers



Robust regression

What else could we do aside from least squares?

Mean absolute error

Huber loss

-insensitive loss



Regularized robust regression

Suppose we combine this loss with an regularizer

Note that the   -insensitive loss has no penalty as long as your prediction is within a 

“margin” of    

We will encounter something very similar to this in the context of classification in 

a few weeks…
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