
Bias-variance decomposition

Last time we considered regression, where                              with     representing 

zero-mean noise

If we measure performance using mean squared error (MSE), then for any algorithm 

that selects some       using the data 

The bias-variance tradeoff gives us another way to think about generalization

Today we will explore this in the context of linear regression



Linear regression

In linear regression, we model      using an affine function:

where            , 

How can we estimate          from the training data? 



Least squares

In least squares linear regression, we select           to minimize the empirical risk 

defined as the sum of squared errors 

Least squares is (arguably) the most fundamental tool in all of applied 

mathematics!
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Example

Suppose           , so that         are scalars

How to minimize?



Example

Rearranging these equations, we obtain

or in matrix form



Example

Inverting the matrix

Setting                      and                     , the solution to this system reduces to 



Example



General least squares

Suppose    is arbitrary.  Set

Then 



General least squares

The minimizer     of this quadratic objective function is

provided that           is nonsingular

“Proof”



Does linear regression always make sense?

Official US DOT forecasts of road traffic, compared to actual



Nonlinear feature maps

Sometimes linear methods (in both regression and classification) just don’t work

One way to create nonlinear estimators or classifiers is to first transform the data 

via a nonlinear feature map

After applying     , we can then try applying a linear method to the transformed 

data



Regression

In the case of regression, our model becomes

where now

Example. Suppose            but          is a cubic polynomial.  How do we find a least 

squares estimate of    from training data?  



Overfitting
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Is the problem just noise?

Noise in the observations can make overfitting a big problem

What if there is no noise?

Runge’s phenomenon

Take a smooth function

– not exactly polynomial

– well approximated by

a polynomial

Even in the absence of noise,

fitting a higher order

polynomial (interpolation)

can be incredibly unstable



Regression summary

Minimizer given by

provided that           is nonsingular



Bias-variance decomposition in linear regression

In a future homework you will show that, for linear regression with           , we 

have 

Linear regression is an unbiased estimator, but this comes at the cost of a 

potentially large variance

This is not the whole story… 

The approximation above breaks down when

The matrix             becomes difficult to invert, and the true variance term can 

become extremely large… 



Regularization and regression

Overfitting occurs as

In this regime, we have too many degrees of freedom, and it becomes likely that             

will be (approximately) singular

Idea: penalize candidate solutions that are “too big”

One candidate regularizer:

is a “tuning parameter” that controls the tradeoff between fit and 

complexity



Intuition: Correlated features

Suppose that     contains highly correlated columns (features):

where    is very small

If we observe            we can explain this equally well by

and

for     very large

It can be beneficial to penalize such large solutions



Tikhonov regularization

This is one example of a more general 

technique called Tikhonov regularization

(Note that     has been replaced by the matrix    )

Solution: Observe that



Tikhonov regularization

Setting this equal to zero and solving for     yields

Suppose                ,  then

for suitable choice of    ,

always well-conditioned



Ridge regression

In the context of regression, Tikhonov regularization has a special name: ridge 

regression

Ridge regression is essentially exactly what we have been talking about, but in the 

special case where

We are penalizing all coefficients in     equally, but not penalizing the offset 



Another take: Constrained minimization

One can show (using Lagrange multipliers, coming later…) that

is formally equivalent to

for a suitable choice of



Tikhonov versus least squares

Assume             and that      has orthonormal columns

Tikhonov regularization is equivalent to shrinking the least squares solution 

towards the origin 



Tikhonov versus least squares

In general, we have this picture

Tikhonov regularization still shrinking the least squares solution, but weighting

different dimensions more heavily



Shrinkage estimators

Tikhonov regularization is one type of shrinkage estimator

Shrinkage estimators are estimators that “shrink” the naïve estimate towards some 

implicit guess

Example: How do we estimate the variance in a sample?

Let                   be     i.i.d. samples drawn according to some unknown distribution.  

How can we estimate the variance?

This is a biased estimate (it shrinks slightly towards zero), however, it also 

achieves a lower MSE than the unbiased estimate



Stein’s paradox

Examples where shrinkage estimators work fundamentally better than naïve 

estimates are much more common than you would think!

Stein’s paradox (1955)

Consider the estimation problem where you

observe                   , where     is i.i.d. Gaussian

noise. 

A natural estimate for    is           .

If the dimension is 3 or higher, then this is suboptimal in terms of the MSE

One can do better by shrinking towards any guess for    

– people usually shrink towards the origin

– a better guess leads to bigger improvements
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