Bias-variance decomposition

Last time we considered regression, where $Y = h^*(X) + N$ with N representing zero-mean noise

If we measure performance using mean squared error (MSE), then for any algorithm that selects some h_D using the data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$

$$\mathbb{E}\left[R(h_{\mathcal{D}})\right] = \mathbb{E}\left[\left(Y - h^{*}(X)\right)^{2}\right] + \mathbb{E}_{X}\left[\left(\bar{h}(X) - h^{*}(X)\right)^{2}\right] + \mathbb{E}_{X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X) - \bar{h}(X)\right)^{2}\right]\right]$$

= noise + bias + variance

The bias-variance tradeoff gives us another way to think about generalization Today we will explore this in the context of linear regression

Linear regression

In *linear regression*, we model h^* using an *affine* function:

$$h(\mathbf{x}) = \boldsymbol{\beta}^T \mathbf{x} + \beta_0$$

where $\boldsymbol{\beta} \in \mathbb{R}^d$, $\beta_0 \in \mathbb{R}$

How can we estimate β , β_0 from the training data?

Least squares

In *least squares* linear regression, we select β , β_0 to minimize the empirical risk defined as the sum of squared errors

$$\widehat{R}_n(\boldsymbol{\beta}, \beta_0) := \sum_{i=1}^n (y_i - \boldsymbol{\beta}^T \mathbf{x}_i - \beta_0)^2$$

Least squares is (arguably) the most fundamental tool in all of applied mathematics!

Legendre (1805)

Gauss (1809) (1795)

Suppose d=1, so that x_i, β are scalars

$$\widehat{R}_n(\beta, \beta_0) = \sum_{i=1}^n (y_i - \beta x_i - \beta_0)^2$$

How to minimize?

$$\frac{\partial \widehat{R}_n}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - \beta x_i - \beta_0) = 0$$

$$\frac{\partial \widehat{R}_n}{\partial \beta} = -2 \sum_{i=1}^n x_i (y_i - \beta x_i - \beta_0) = 0$$

Rearranging these equations, we obtain

$$n\beta_0 + \sum_{i=1}^n \beta_i x_i = \sum_{i=1}^n y_i$$
$$\sum_{i=1}^n \beta_0 x_i + \sum_{i=1}^n \beta_i x_i^2 = \sum_{i=1}^n x_i y_i$$

or in matrix form

$$\begin{bmatrix} n & \sum_{i} x_i \\ \sum_{i} x_i & \sum_{i} x_i^2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta \end{bmatrix} = \begin{bmatrix} \sum_{i} y_i \\ \sum_{i} x_i y_i \end{bmatrix}$$

Inverting the matrix

$$\begin{bmatrix} \widehat{\beta}_0 \\ \widehat{\beta} \end{bmatrix} = \begin{bmatrix} n & \sum_i x_i \\ \sum_i x_i & \sum_i x_i^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum_i y_i \\ \sum_i x_i y_i \end{bmatrix}$$

Setting $\bar{x}=\frac{1}{n}\sum_i x_i$ and $\bar{y}=\frac{1}{n}\sum_i y_i$, the solution to this system reduces to

$$\begin{bmatrix} \widehat{\beta}_0 \\ \widehat{\beta} \end{bmatrix} = \frac{1}{\sum_i x_i^2 - n\bar{x}^2} \begin{bmatrix} \bar{y}(\sum_i x_i^2) - \bar{x} \sum_i x_i y_i \\ \sum_i x_i y_i - n\bar{x}\bar{y} \end{bmatrix}$$

General least squares

Suppose d is arbitrary. Set

$$heta = egin{bmatrix} eta_0 \ eta(1) \ dots \ eta(d) \end{bmatrix}$$

Then
$$\widehat{R}_n(\boldsymbol{\theta}) = \sum_{i=1}^n (y_i - \boldsymbol{\beta}^T \mathbf{x}_i - \beta_0)^2 = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}\|_2^2$$

$$m{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix} \quad m{X} = egin{bmatrix} 1 & x_1(1) & \cdots & x_1(d) \ 1 & x_2(1) & \cdots & x_2(d) \ dots & dots & \ddots & dots \ 1 & x_n(1) & \cdots & x_n(d) \end{bmatrix}$$

General least squares

The minimizer $\widehat{\boldsymbol{\theta}}$ of this quadratic objective function is

$$\widehat{\boldsymbol{\theta}} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

provided that $oldsymbol{X}^Toldsymbol{X}$ is **nonsingular**

"Proof"

$$||y - X\theta||_2^2 = (y - X\theta)^T (y - X\theta)$$

= $y^T y - 2y^T X\theta + \theta^T X^T X\theta$

$$\nabla_{\theta} \|y - X\theta\|_{2}^{2} = -2X^{T}y + 2X^{T}X\theta = 0$$

Does linear regression always make sense?

Official US DOT forecasts of road traffic, compared to actual

Nonlinear feature maps

Sometimes linear methods (in both regression and classification) just don't work

One way to create nonlinear estimators or classifiers is to first transform the data via a nonlinear feature map

$$\Phi: \mathbb{R}^d \to \mathbb{R}^{d'}$$

After applying Φ , we can then try applying a linear method to the transformed data

$$\Phi(\mathbf{x}_1), \ldots, \Phi(\mathbf{x}_n)$$

Regression

In the case of regression, our model becomes

$$h(\mathbf{x}) = \boldsymbol{\beta}^T \boldsymbol{\Phi}(\mathbf{x}) + \beta_0$$

where now $oldsymbol{eta} \in \mathbb{R}^{d'}$

Example. Suppose d=1 but h(x) is a cubic polynomial. How do we find a least squares estimate of h from training data?

$$\Phi_k(x) = x^k \longrightarrow X = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 \end{bmatrix}$$

Is the problem just noise?

Noise in the observations can make overfitting a big problem

What if there is no noise?

Runge's phenomenon

Take a smooth function

- not exactly polynomial
- well approximated by a polynomial

Even in the absence of noise, fitting a higher order polynomial (interpolation) can be incredibly unstable

Regression summary

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad X = \begin{bmatrix} 1 & x_1(1) & \cdots & x_1(d) \\ 1 & x_2(1) & \cdots & x_2(d) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n(1) & \cdots & x_n(d) \end{bmatrix} \theta = \begin{bmatrix} \beta_0 \\ \beta(1) \\ \vdots \\ \beta(d) \end{bmatrix}$$

$$\widehat{R}_n(\boldsymbol{\theta}) = \sum_{i=1}^n (y_i - \boldsymbol{\beta}^T \mathbf{x}_i - \beta_0)^2 = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}\|_2^2$$

Minimizer given by

$$\widehat{\boldsymbol{\theta}} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

provided that $oldsymbol{X}^Toldsymbol{X}$ is nonsingular

Bias-variance decomposition in linear regression

In a future homework you will show that, for linear regression with $d \leq n$, we have

$$\mathbb{E}\left[R(h_{\mathcal{D}})\right] \approx \text{var}(N) + 0 + \frac{d}{n}\text{var}(N)$$

Linear regression is an *unbiased* estimator, but this comes at the cost of a potentially large variance

This is not the whole story...

The approximation above breaks down when $d \rightarrow n$

The matrix $\boldsymbol{X}^T\boldsymbol{X}$ becomes difficult to invert, and the true variance term can become extremely large...

Regularization and regression

Overfitting occurs as $d \rightarrow n$

In this regime, we have too many degrees of freedom, and it becomes likely that will be (approximately) singular ${m X}^T{m X}$

Idea: penalize candidate solutions that are "too big"

One candidate regularizer: $r(\theta) = \|\theta\|_2^2$

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta} \|_2^2 + \lambda \| \boldsymbol{\theta} \|_2^2$$

 $\lambda > 0$ is a "tuning parameter" that controls the tradeoff between fit and complexity

Intuition: Correlated features

Suppose that X contains highly correlated columns (features):

where ϵ is very small

If we observe ypprox 0 we can explain this equally well by

$$m{ heta} pprox egin{bmatrix} 0 \ 0 \end{bmatrix} \quad ext{ and } \quad m{ heta} pprox egin{bmatrix} C \ -C \end{bmatrix}$$

for C very large

It can be beneficial to penalize such large solutions

Tikhonov regularization

This is one example of a more general technique called *Tikhonov regularization*

$$\widehat{m{ heta}} = rg\min_{m{ heta}} \|m{y} - m{X}m{ heta}\|_2^2 + \|m{\Gamma}m{ heta}\|_2^2$$

(Note that λ has been replaced by the matrix Γ)

Solution: Observe that

$$||y - X\theta||_{2}^{2} + ||\Gamma\theta||_{2}^{2} = (y - X\theta)^{T}(y - X\theta) + \theta^{T}\Gamma^{T}\Gamma\theta$$

$$= y^{T}y + \theta^{T}X^{T}X\theta - 2\theta^{T}X^{T}y$$

$$+ \theta^{T}\Gamma^{T}\Gamma\theta$$

$$= y^{T}y + \theta^{T}(X^{T}X + \Gamma^{T}\Gamma)\theta$$

$$- 2\theta^{T}X^{T}y$$

Tikhonov regularization

$$\nabla_{\theta} \left(\boldsymbol{y}^{T} \boldsymbol{y} + \boldsymbol{\theta}^{T} \left(\boldsymbol{X}^{T} \boldsymbol{X} + \boldsymbol{\Gamma}^{T} \boldsymbol{\Gamma} \right) \boldsymbol{\theta} - 2 \boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{y} \right)$$
$$= 2 \left(\boldsymbol{X}^{T} \boldsymbol{X} + \boldsymbol{\Gamma}^{T} \boldsymbol{\Gamma} \right) \boldsymbol{\theta} - 2 \boldsymbol{X}^{T} \boldsymbol{y}$$

Setting this equal to zero and solving for $oldsymbol{ heta}$ yields

$$\widehat{\boldsymbol{\theta}} = \left(\boldsymbol{X}^T \boldsymbol{X} + \boldsymbol{\Gamma}^T \boldsymbol{\Gamma} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Suppose $\Gamma = \sqrt{\lambda} \boldsymbol{I}$, then

$$\widehat{\boldsymbol{\theta}} = \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

for suitable choice of λ , always well-conditioned

Ridge regression

In the context of regression, Tikhonov regularization has a special name: ridge regression

Ridge regression is essentially exactly what we have been talking about, but in the special case where

$$\Gamma = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda} & 0 & \cdots & 0 \\ 0 & 0 & \sqrt{\lambda} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \sqrt{\lambda} \end{bmatrix}$$

We are penalizing all coefficients in β equally, but not penalizing the offset β_0

Another take: Constrained minimization

One can show (using Lagrange multipliers, coming later...) that

$$\widehat{m{ heta}} = rg\min_{m{ heta}} \|m{y} - m{X}m{ heta}\|_2^2 + \|m{\Gamma}m{ heta}\|_2^2$$

is formally equivalent to

$$\widehat{m{ heta}} = rg\min_{m{ heta}} \|m{y} - m{X}m{ heta}\|_2^2$$
 subject to $\|m{\Gamma}m{ heta}\|_2^2 \leq au$

for a suitable choice of au

Tikhonov versus least squares

Assume $\Gamma=I$ and that X has orthonormal columns

Tikhonov regularization is equivalent to shrinking the least squares solution towards the origin

Tikhonov versus least squares

In general, we have this picture

Tikhonov regularization still shrinking the least squares solution, but weighting different dimensions more heavily

Shrinkage estimators

Tikhonov regularization is one type of *shrinkage estimator*

Shrinkage estimators are estimators that "shrink" the naïve estimate towards some implicit guess

Example: How do we estimate the variance in a sample?

Let x_1, \ldots, x_n be n i.i.d. samples drawn according to some unknown distribution. How can we estimate the variance?

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 \longrightarrow \mathbb{E}\left[\widehat{\sigma}^2\right] = \frac{n-1}{n} \sigma^2$$

This is a *biased* estimate (it shrinks slightly towards zero), however, it also achieves a *lower MSE* than the unbiased estimate

Stein's paradox

Examples where shrinkage estimators work fundamentally better than naïve

estimates are much more common than you would think!

Stein's paradox (1955)

Consider the estimation problem where you observe $y=\theta+n$, where n is i.i.d. Gaussian noise.

A natural estimate for heta is $\widehat{ heta}=y$.

If the dimension is 3 or higher, then this is suboptimal in terms of the MSE

One can do better by shrinking towards any guess for heta

- people usually shrink towards the origin
- a better guess leads to bigger improvements