
From classification to regression

We now turn our attention more fully to the problem of regression,
which corresponds to the supervised learning setting when Y = R.
Said differently, we will not attempt to learn a discrete label anymore
as in classification but a continuously changing one. Classification
is a special case of regression, but the discrete nature of labels lends
itself to specific insights and analysis, which is why we studied it
separately. Looking at regression will require the introduction of new
concepts and will allow us to obtain new insights into the learning
problem.

Our regression model is that the relation between label and data is
of the form y = h(x)+z with h ∈ H, whereH is a class of functions
(polynomials, splines, kernels, etc.), and z is some random noise.

Linear regression corresponds to the situation in which H is the
set of affine functions, i.e.,

h(x) = β⊺x + β0 with β = [β1, · · · , βd]
⊺

Least squares regression corresponds to the situation in which
the we fit the parameters of our model using the sum of squared
errors as our measure of empirical risk, e.g.,

SSE(β, β0) =
n∑

i=1

(yi − β⊺xi − β0)
2

Linear least squares regression is a widely used technique in applied
mathematics and can be traced back to the work of Legendre in Nou-
velles méthodes pour la détermination des orbites des comètes
(1805) and Gauss in Theoria Motus (1809, but privately discovered
in 1795).
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We will make a change of notation to simplify our analysis moving
forward. We set

θ =


β0

β1
...
βd

 y =


y1
y2
...
yn

 X =


1 −x⊺

1−
1 −x⊺

2−
... ...
1 −x⊺

n−

 ,

which allows us to rewrite the sum of squared errors as

SSE(θ) = ∥y −Xθ∥22.

One of the reasons that makes linear least squares regression so pop-
ular is the existence of a closed form analytical solution.

Lemma 1 If X⊺X is non-singular the minimizer of the SSE is

θ̂ = (X⊺X)−1X⊺y

Proof See class slides.

The existence of this solution is sometimes misleading because com-
puting θ̂ can be extremely numerically unstable (i.e., the matrix
(X⊺X)−1 could be ill-conditioned). We will return to this issue
shortly, but we first emphasize that linear least squares methods are
far more powerful than might initially seem. This is because one
can use the same methodology for nonlinear regression by using a
nonlinear feature map Φ : Rd → Rd′. The regression model becomes

y = β⊺Φ(x) + β0 with β ∈ Rd′. (1)
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Example. To obtain a least square estimate of cubic polynomial h
with d = 1, one can use the nonlinear map

Φ(x) =


1
x
x2

x3

 . (2)

Overfitting and regularization

Overfitting is the problem that happens when fitting the data well
no longer ensures that the out-of-sample error is small, i.e., the un-
derlying model learned generalized poorly. This happens not only
when there are too many degrees of freedom in model so that one
“learns the noise ” but also when the hypothesis set contains sim-
pler functions than the target function h but the number of sample
points n is too small. In general, overfitting occurs as the number
of features d begins to approach the number of observations n.

To illustrate this, consider the following example in data is generated
as y = x2 + z with x ∈ [−1; 1], where z ∼ N (0, σ = 0.1). We
perform regression with polynomials of degree d. Fig. 1a shows the
true underlying model and five samples obtained independently and
uniformly at random. Fig. 1 shows the resulting predictor obtained
by fitting the data to a polynomial of degree d = 4. Since we only
have five points, there exists a degree four polynomial that predicts
exactly the value of all five training point. This is an example where
our regression is effectively learning the noise in the model. To fully
appreciate the consequence of overfitting, Fig. 1c shows the regression
results for twenty randomly sampled sets of five points.
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(a) True model and sample points.
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(b) Regression fit with d = 4.
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(c) Many regressions with d = 4
and n = 5.
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(d) Many regressions with d = 1
and n = 5.

Figure 1: Overfitting and regression with too few datapoints

Note that there is a huge variance in the resulting predictor, sug-
gesting that we have an unstable prediction that does not generalize
well. Note also that one observes a similar variance when trying to fig
the data to a polynomial of degree d = 1. In the latter situation, the
degree of the polynomial is one less than the true model so that the
model cannot fit the noise; however, the variance stems from the fact
that there are few sample points. As shown in Fig. 2a and Fig. 2b,
overfitting disappears once we have enough data points.

In practice though, we are often interested in limiting overfitting
even when the number of data points is small. The key solution is a
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(a) Many regressions with d = 4
and n = 50.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

True model and prediction

True model

(b) Many regressions with d = 1
and n = 50.

Figure 2: Regression with enough data points

technique called regularization.

Tikhonov regularization

The key idea behind regularization is to introduce a penalty term to
“regularize” the vector θ:

θ = argmin
θ

∥y −Xθ∥22 + ∥Γθ∥22

where Γ ∈ R(d+1)×(d+1).

Lemma 2 The minimizer of the least-square problem with Tikhonov
regularization is

θ̂ = (X⊺X + Γ⊺Γ)−1X⊺y

Proof See slides.
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For the special case Γ =
√
λI for some λ > 0, we obtain

θ̂ = (X⊺X + λI)−1X⊺y

This simple change has many benefits, including improving numerical
stability when computing θ̂ since X⊺X + λI is better conditioned
than X⊺X .

Ridge regression is a slight variant of the above that does not pe-
nalize β0 and corresponds to

Γ =


0 0 · · · 0

0
√
λ · · · 0

... . . . . . . ...

0 · · · · · ·
√
λ


To illustrate the effect of regularization, Fig. 3 shows the resulting
regressions with λ = 1 in the same low-sample situation as earlier.
Notice how the variance of the regression is substantially reduced.
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(a) Many ridge regressions with
d = 4 and n = 5.
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(b) Many ridge regressions with
d = 1 and n = 5.

Figure 3: Ridge regression

It is also useful to understand Tikhonov regularization as a con-
strained optimization problem. One can show that the minimizer of
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the least-square problem with Tikhonov regularization is the solution
of

arg min
θ

∥y −Xθ∥22 such that ∥Γθ∥22 ≤ τ

for some τ > 0.

Fig. 4 illustrates the effect of Tikhonov regularization in R2 assuming
that Γ = I . The Tikhonov solution is shrinked towards the zero
vector to satisfy the constraint. Intuitively, the regularized solution
corresponds to the point where the level set of ∥y − Xθ∥2 first
intersects the feasible region ∥θ∥22 = τ .

θ1

θ2

‖θ‖22 ! τ

θ̂LS

θ̂reg

Figure 4: Illustration of Tikhonov regularization
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Shrinkage estimators

The Tikhonov regularization previously introduced is a shrinkage
estimator, in the sense that its shrinks a naive estimate towards some
guess. As illustrated in Fig. 4, one can think of the regularization as
shrinking the least-square estimate θLS towards zero.

Shrinkage estimators are arguably a bit strange, especially because
it may not be clear priori how biasing an estimate towards a guess
would bring any benefit. The intuition you should have is that the
shrinkage often leads to a lower variance of the estimator, perhaps at
the expense of an increase in the bias. The example below illustrates
this idea in a simple situation.

Example. Let {xi}Ni=1 be iid samples drawn according to unknown
distribution with variance σ2. Consider two estimators of the vari-
ance

σ̂2
biased =

1

N

N∑
i=1

(xi − µ̂)2 σ̂2
unbiased =

1

N − 1

N∑
i=1

(xi − µ̂)2 (3)

As the names suggest, it is not hard to show that

E σ̂2
biased =

N − 1

N
σ2 E σ̂2

unbiased = σ2 (4)

Perhaps surprisingly one can also show that the biased estimate has
a lower variance than the unbiased one.
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