
Another view on generalization

We have formalized the problem of supervised learning as finding a
function h in a given set H that minimizes the risk R(h). In the
context of classification we hope to approximate the Bayes classifier,
while in the context of regression we hope to approximate some true
underlying function. We have already seen that the choice ofH must
strike a delicate tradeoff between two desirable characteristics:

� a more complex H leads to better chance of approximating
ideal classifier/function;

� a less complex H leads to better chance of generalizing to
unseen data.

The problem with a more complex H is that, while it can do a good
job of approximating the ideal classifier/function, in the absence of a
sufficient amount of data it is hard to determine the correct function
from data and we run the risk of overfitting.

In the context of classification, we have already seen that the tradeoff
can be precisely quantified in terms of the VC generalization bound,
which takes the form

R(h) ≤ R̂n(h) + ϵ(H, n) with high probability.

Here we develop an alternative method to quantify the tradeoff called
the bias-variance decomposition which takes the form

R(h) ≈ noise + bias2 + variance.

Here, the noise represents fundamental/unavoidable error inherent
in the problem, the bias captures how well H can approximate the
optimal h⋆, while the variance captures how likely we are to pick
a good h ∈ H. This approach generalizes more easily to regression
than the VC dimension approach developed for classification.
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The bias-variance decomposition

We formalize the bias-variance tradeoff assuming the following:

� h⋆ : Rd → R is the unknown target function that we are trying
to learn;

� D = {(xi, yi)}ni=1 is the dataset, where (xi, yi) are indepen-
dent and identically distributed; specifically, xi ∈ Rd and
yi = f (xi) + εi ∈ R, where εi is a zero-mean noise ran-
dom variable independent of xi with variance σ2

ε (for instance
ϵi ∼ N (0, σ2

ε));

� hD : Rd → R is our choice of function in H, selected using D;

� The performance of hD is measured in terms of the mean
squared error R(hD) = EXY (hD(X)− Y )2;

Note that the random variables (X, Y ) denote the data at testing
and should not be confused with the random variables inD represent-
ing the training data, and that since D is itself random, the metric
R(hD) is random and we will ultimately be interested in ED [R(hD)].

Lemma 1 (Bias-variance decomposition)

ED [R(hD)] = σ2
ε + EX [var (hD(X)) |X ] + EX

[
bias(hD(X))2|X

]
with

var (hD(X)) = ED

[
(hD(X)− ED hD(X))

2
]

bias(hD(X)) = ED [hD(X)]− h⋆(X)
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Proof To simplify notation, we set h̄(X) = ED [hD(X)]. Then,

ED [R(hD)] = ED
[
EXY

[
(hD(X)− Y )2

]]
= ED

[
EXε

[
(hD(X)− h⋆(X)− ε)2

]]
= ED

[
EXε

[
(hD(X)− h̄(X) + h̄(X)− h⋆(X)− ε)2

]]
= EDEXEε

[
(hD(X)− h̄(X))2 + (h̄(X)− h⋆(X))2 + ε2

+ 2(hD(X)− h̄(X))(h̄(X)− h⋆(X))

−2(hD(X)− h̄(X))ε− 2(h̄(X)− h⋆(X))ε
]

Note that in the final equality above we have used the fact that D,
X , and ε are independent. Notice that

EDEXEε

[
(hD(X)− h̄(X))2

]
= EX [var (hD(X)|X)]

EDEXEε

[
(h̄(X)− h⋆(X))2

]
= EX

[
bias(hD(X))2

]
EDEXEε

[
ε2
]
= σ2

ε .

The last three terms turn out to be zero since

EDEX

[
(hD(X)− h̄(X))(h̄(X)− h⋆(X))

]
= EXED

[
(hD(X)− h̄(X))(h̄(X)− h⋆(X))

]
= EX

[
(ED [hD(X)]− h̄(X))(h̄(X)− h⋆(X))

]
= 0

and

EDEXEε

[
(hD(X)− h̄(X))ε

]
= EX

[
ED

[
hD(X)− h̄(X)

]]
Eε[ε] = 0

EDEXEε

[
(h̄(X)− h⋆(X))ε

]
= EX

[
h̄(X)− h⋆(X)

]
Eε[ε] = 0.
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Example

We now consider a concrete example. Suppose that h⋆(X) = sin(πX)
where X ∼ Uniform[−1, 1] and that we are given n = 2 noise-free
training examples. We will consider two possible hypothesis sets:

� H0 = {h : h(x) = b, b ∈ R},
� H1 = {h : h(x) = ax + b, a, b ∈ R}.

Since the observations are noise-free (meaning each observation is
of the form Y = sin(πX) with no ε term), the noise component of
R(hD) is zero and all we need to compute are the bias and variance
terms for each hypothesis set. We will perform these computations
for each hypothesis set in turn.

Bias-variance decomposition for H0

We will begin, for reference, by computing

h♯ = argmin
h∈H0

EX

[
(h− h⋆(X))2

]
.

Since any h ∈ H0 is just a constant, this reduces to determining

b⋆ = argmin
b∈R

EX

[
(b− sin(πX))2

]
.

Note that since X ∼ Uniform[−1, 1] we have that the probability
density function for X is

fX(x) =

{
1
2

x ∈ [−1, 1],

0 otherwise,
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and thus

EX

[
(b− sin(πX))2

]
=

∫ 1

−1

1

2
(b− sin(πx))2dx

= b2 +
1

2
.

Taking a derivative with respect to b and setting this equal to zero
yields the requirement that 2b⋆ = 0, and hence b⋆ = 0, i.e., h♯(x) = 0.
We can also now easily compute

R(h♯) = EX

[
(h♯(X)− sin(πX))2

]
= EX

[
(sin(πX))2

]
=

1

2
.

The next step in our calculations is to determine h̄(X) = ED [hD(X)].
To do this we must consider what hD will be for any dataset D =
{(x1, y1), (x2, y2)}, where yi = sin(πxi) andX1, X2 ∼ Uniform[−1, 1].
Given any particular D, a natural strategy is to choose hD(x) to min-
imize the empirical squared error, i.e., to choose b to minimize

(b− y1)
2 + (b− y2)

2.

It is straightforward to show that the optimal b is given by

b =
y1 + y2

2
,

and thus

hD(X) =
y1 + y2

2
=

sin(πx1) + sin(πx2)

2
.

From this we have

h̄(X) = EX1,X2

[
sin(πX1) + sin(πX2)

2

]
= EX1

[
sin(πX1)

2

]
+ EX2

[
sin(πX2)

2

]
= 0.
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The last equality can be seen either by symmetry or by manually cal-
culating the expectation using an integral. Finally, we can conclude
that

bias2 = EX

[
bias(hD(X))2

]
= EX

[
(h̄(X)− h⋆(X))2

]
= EX

[
(sin(πX2))

2
]

=
1

2
.

The final step is to compute the variance term. Specifically, we must
compute

EX [var (hD(X)|X)] = EX

[
ED

[
(hD(X)− h̄(X))2

]]
Note that

ED
[
(hD(X)− h̄(X))2

]
= EX1,X2

[(
sin(πX1) + sin(πX2)

2
− 0

)2
]

= EX1

[
sin2(πX1)

4

]
+ EX2

[
sin2(πX2)

4

]
+ EX1,X2

[sin(πX1) sin(πX2)]

=
1

8
+

1

8
+ EX1

[sin(πX1)]EX2
[sin(πX2)]

=
1

4

Thus

EX [var (hD(X)|X)] = EX

[
1

4

]
=

1

4
.
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Putting this all together, we have

ED [R(hD)] =
1

2
+

1

4
=

3

4
.

Bias-variance decomposition for H1

As before, we will begin by computing

h♯ = argmin
h∈H1

EX

[
(h− h⋆(X))2

]
.

This is somewhat more complicated since now h ∈ H1 is an arbitrary
affine function, thus we must solve

(a⋆, b⋆) = argmin
a,b∈R

EX

[
(aX + b− sin(πX))2

]
.

Now, note that

EX

[
(aX + b− sin(πX))2

]
=

∫ 1

−1

1

2
(ax + b− sin(πx))2dx

=
a2

3
− 2a

π
+ b2 +

1

2
.

Taking a derivative with respect to b and setting it equal to zero again
yields the requirement that 2b⋆ = 0, and hence b⋆ = 0. Repeating
with a yields the requirement that 2

3
a⋆ − 2

π
= 0, and hence a⋆ = 3

π
.

Thus h♯(x) = 3
π
x. We can also now easily compute

R(h♯) = EX

[(
h♯(X)− sin(πX)

)2]
= EX

[(
3

π
X − sin(πX)

)2
]

=
(3/π)2

3
− 2(3/π)

π
+

1

2
=

1

2
− 3

π2
≈ 0.196.
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Note that this is substantially smaller than R(h♯) for H0.

The next step in our calculations is to determine h̄(X) = ED [hD(X)].
As before, we must consider what hD will be for any dataset D =
{(x1, y1), (x2, y2)}, where yi = sin(πxi) andX1, X2 ∼ Uniform[−1, 1].
If we follow the same approach of minimizing the empirical error, this
will result in the a and b that interpolate the dataset. The formula
for this will be given by

a =
y2 − y1
x2 − x1

b =
x2y1 − x1y2
x2 − x1

.

The formula for a is simply the standard formula for the slope of a
line passing through two points, and the formula for b can be obtained
by simply constraining y1 = ax1 + b for this choice of a. Thus

hD(X) =
y2 − y1
x2 − x1

X +
x2y1 − x1y2
x2 − x1

=
(sin(πx2)− sin(πx1))X + x2 sin(πx1)− x1 sin(πx2)

x2 − x1

.

From linearity we have

h̄(X) = EX1,X2
[hD(X)]

= āX + b̄,

where

ā = EX1,X2

[
(sin(πX2)− sin(πX1))

X2 −X1

]
=

∫ 1

−1

∫ 1

−1

1

4
· (sin(πx2)− sin(πx1))

x2 − x1

dx1dx2

≈ 0.7759
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and

b̄ = EX1,X2

[
X2 sin(πX1)−X1 sin(πX2)

X2 −X1

]
=

∫ 1

−1

∫ 1

−1

1

4
· (x2 sin(πx1)− x1 sin(πx2))

x2 − x1

dx1dx2

= 0.

Thus,
h̄(X) ≈ 0.7759X.

Finally, we can conclude that

bias2 = EX

[
bias(hD(X))2

]
= EX

[
(h̄(X)− h⋆(X))2

]
= EX

[
(0.7759X − sin(πX))

2
]

=
(0.7759)2

3
− 2 · 0.7759

π
+

1

2
≈ 0.207

The final step is to compute the variance term. Specifically, we must
compute

EX [var (hD(X)|X)] = EX

[
ED

[
(hD(X)− h̄(X))2

]]
Note that if we let

AD =
sin(πX2)− sin(πX1)

X2 −X1

and

BD =
X2 sin(πX1)−X1 sin(πX2)

X2 −X1

,
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then we can write

ED
[
(hD(X)− h̄(X))2

]
= ED

[
(ADX +BD − 0.7759X)

2
]

= X2 ED
[
(AD − 0.7759)2

]
+ 2X ED [(AD − 0.7759)BD] + ED

[
B2

D
]
.

Note that

ED
[
(AD − 0.7759)2

]
=

(
ED

[
A2

D
]
− 0.7759 · ED [AD] + 0.77592

)
≈

(
ED

[
A2

D
]
− 0.77592

)
,

where the final (approximate) equality follows from the fact that
ED [AD] = ā ≈ 0.7759. We can compute

ED
[
A2

D
]
=

∫ 1

−1

∫ 1

−1

1

4
·
(
(sin(πx2)− sin(πx1))

x2 − x1

)2

dx1dx2

≈ 2.8981.

Similarly, we can also compute

ED
[
B2

D
]
=

∫ 1

−1

∫ 1

−1

1

4
·
(
(x2 sin(πx1)− x1 sin(πx2))

x2 − x1

)2

dx1dx2

≈ 0.9109.

We will not bother to compute

ρ = ED [(AD − 0.7759)BD]

since, as we will see below, it does not matter. Putting this together
yields

EX [var (hD(X)|X)] ≈ EX

[
(2.8981− 0.77592)X2 + 2ρX + 0.9109

]
≈ 2.2961EX

[
X2

]
+ 2ρEX [X ] + 0.9109

=
2.2961

3
+ 0.9109 ≈ 1.676,

10
Georgia Tech ECE 6254 Spring 2024; Notes by M. Bloch, M. A. Davenport, and J. Romberg. Last updated 15:13, February 7, 2024



where above we have used that for X ∼ Uniform[−1, 1], E[X ] = 0
and E[X2] = 1

3
. Putting this all together, we have

ED [R(hD)] ≈ 0.207 + 1.676 = 1.883.

Thus, despite the fact that H1 resulted in a much smaller R(h♯), we
see that ED [R(hD)] is substantially larger than before because of
the much larger variance.
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