Interpreting the VC bound

Approximation-generalization tradeoff

Given a set \mathcal{H} , find a function $h \in \mathcal{H}$ that minimizes R(h)

Our goal is to find an $h \in \mathcal{H}$ that approximates the Bayes classifier, or some true underlying function

More complex $\mathcal{H} \longrightarrow$ better chance of *approximating* the ideal classifier/function

Less complex $\mathcal{H} \longrightarrow$ better chance of **generalizing** to new data (out of sample)

We must carefully limit "complexity" to avoid overfitting

Quantifying the tradeoff

VC generalization bound

$$R(h) \lesssim \widehat{R}_n(h) + \epsilon(\mathcal{H}, n)$$

Alternative approach: Bias-variance decomposition

- **noise:** how good of a job does the ideal estimate h^* do?
- **bias:** how well can \mathcal{H} approximate h^* ?
- *variance*: how well can we pick a good $h \in \mathcal{H}$?

$$R(h) =$$
noise $+$ bias $+$ variance

Bias-variance decomposition easily generalizes to regression

Regression setting

In this treatment, we will assume real-valued observations (i.e., regression) and consider the *squared error*

We observe an $X \in \mathbb{R}^d$ and wish to predict $Y \in \mathbb{R}$

Given a function $h:\mathbb{R}^d o \mathbb{R}$, we measure its quality via

$$R(h) = \mathbb{E}_{XY} \left[(Y - h(X))^2 \right]$$

According to this metric, we can show that the optimal choice for $\,h\,$ is

$$h^{\star}(X) = \mathbb{E}[Y|X]$$

$$h^{\star}(x) = \mathbb{E}[Y|X=x] = \int y f_{Y|X}(y|x) dy$$

Conditional mean minimizes MSE

$$\mathbb{E}\left[\left(Y - h(X)\right)^{2}\right] = \mathbb{E}\left[\left(Y - \mathbb{E}[Y|X] + \mathbb{E}[Y|X] - h(X)\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(Y - \mathbb{E}[Y|X]\right)^{2}\right] + \mathbb{E}\left[\left(\mathbb{E}[Y|X] - h(X)\right)^{2}\right]$$

$$+ 2\mathbb{E}\left[\left(Y - \mathbb{E}[Y|X]\right)\left(\mathbb{E}[Y|X] - h(X)\right)\right]$$

$$= \mathbb{E}\left[\left(Y - \mathbb{E}[Y|X]\right)^{2}\right] + \mathbb{E}\left[\left(\mathbb{E}[Y|X] - h(X)\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(Y - \mathbb{E}[Y|X]\right)^{2}\right]$$

Conditional mean minimizes MSE

$$\mathbb{E}\left[\left(Y - \mathbb{E}[Y|X]\right)\left(\mathbb{E}[Y|X] - h(X)\right)\right] = \mathbb{E}\left[\left(Y - \mathbb{E}[Y|X]\right)g(X)\right]$$

$$= \mathbb{E}\left[g(X)Y\right] - \mathbb{E}\left[g(X)\mathbb{E}[Y|X]\right]$$

$$= \mathbb{E}\left[g(X)Y\right] - \mathbb{E}\left[\mathbb{E}[g(X)Y|X]\right]$$

$$= \mathbb{E}\left[g(X)Y\right] - \mathbb{E}\left[g(X)Y\right]$$

$$= 0$$

Regression

Now suppose we are given observations

$$\mathcal{D} := \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \qquad egin{array}{l} \mathbf{x} \in \mathbb{R}^d \ y \in \mathbb{R} \end{array}$$

Given a class of candidate functions \mathcal{H} , we would like to use the data \mathcal{D} to select a function $h_{\mathcal{D}} \in \mathcal{H}$ that is as close as possible to $h^*(X) = \mathbb{E}[Y|X]$

Note: We can also think of $h^{\star}(X)$ as generating the data via

$$Y = h^{\star}(X) + N$$

where N represents zero-mean noise

Excess risk in regression

One possible strategy is to select the $h \in \mathcal{H}$ that minimizes

$$\widehat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n (y_i - h(\mathbf{x}_i))^2$$

Regardless of our regression strategy, we select some $h_{\mathcal{D}} \in \mathcal{H}$ and have

$$R(h_{\mathcal{D}}) = \mathbb{E}\left[(Y - h_{\mathcal{D}}(X))^{2} \right]$$

$$= \mathbb{E}\left[(Y - h^{*}(X))^{2} \right] + \mathbb{E}\left[(h_{\mathcal{D}}(X) - h^{*}(X))^{2} \right]$$
Noise variance
$$R_{\mathsf{E}}(h_{\mathcal{D}})$$

Example

Decomposing the excess risk

$$R_{\mathsf{E}}(h_{\mathcal{D}}) = \mathbb{E}_X \left[(h_{\mathcal{D}}(X) - h^*(X))^2 \right]$$
 expected error for a given $h_{\mathcal{D}}$ random (depends on \mathcal{D})

$$\mathbb{E}_{\mathcal{D}}\left[R_{\mathsf{E}}(h_{\mathcal{D}})\right] = \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{X}\left[\left(h_{\mathcal{D}}(X) - h^{\star}(X)\right)^{2}\right]\right]$$

$$= \mathbb{E}_{X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X) - h^{\star}(X)\right)^{2}\right]\right]$$
let's focus on just this term

The average hypothesis

To evaluate

$$\mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X)-h^{\star}(X)\right)^{2}\right]$$

we define the "average hypothesis"

$$\bar{h}(X) = \mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(X)]$$

Interpretation

Imagine drawing many data sets $\mathcal{D}_1,\ldots,\mathcal{D}_p$

$$ar{h}(X) pprox rac{1}{p} \sum_{i=1}^p h_{\mathcal{D}_i}(X)$$

Example

Using the average hypothesis

$$\mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X) - h^{\star}(X)\right)^{2}\right] = \mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X) - \bar{h}(X) + \bar{h}(X) - h^{\star}(X)\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X) - \bar{h}(X)\right)^{2} + \left(\bar{h}(X) - h^{\star}(X)\right)^{2} + 2\left(h_{\mathcal{D}}(X) - \bar{h}(X)\right)\left(\bar{h}(X) - h^{\star}(X)\right)\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X) - \bar{h}(X)\right)^{2}\right] + \left(\bar{h}(X) - h^{\star}(X)\right)^{2}$$

$$\text{variance}(X) \qquad \text{bias}(X)$$

Bias and variance

Plugging this back into our original expression, we get

$$\mathbb{E}_{\mathcal{D}}[R_{\mathsf{E}}(h_{\mathcal{D}})] = \mathbb{E}_{X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X) - h^{\star}(X)\right)^{2}\right]\right]$$

$$= \mathbb{E}_{X}\left[\mathsf{bias}(X) + \mathsf{variance}(X)\right]$$

$$= \mathsf{bias} + \mathsf{variance}$$

Visualizing the bias

$$\mathsf{bias} = \mathbb{E}_X \left[\left(\overline{h}(X) - h^\star(X) \right)^2 \right]$$

Visualizing the variance

variance =
$$\mathbb{E}_X \left[\mathbb{E}_{\mathcal{D}} \left[\left(h_{\mathcal{D}}(X) - \bar{h}(X) \right)^2 \right] \right]$$

Alternative decomposition of excess risk

In summary, we have gone to a lot of work to show that

Noise variance
$$\mathbb{E}\left[R(h_{\mathcal{D}})\right] = \mathbb{E}\left[\left(Y - h^{\star}(X)\right)^{2}\right] + \mathbb{E}\left[\left(h_{\mathcal{D}}(X) - h^{\star}(X)\right)^{2}\right]$$
$$= \mathbb{E}\left[\left(Y - h^{\star}(X)\right)^{2}\right] + \text{bias} + \text{variance}$$

Recall
$$h^{\sharp} = \arg\min_{h \in \mathcal{H}} R(h)$$

Via essentially the same argument, one can also find a decomposition of the form

$$\mathbb{E}\left[R(h_{\mathcal{D}})\right] = \mathbb{E}\left[\left(Y - h^{\sharp}(X)\right)^{2}\right] + \text{bias} + \text{variance}$$
Approximation error modified

Example: Learning a sine

Suppose $h^*(x) = \sin(\pi x)$ and we get n = 2 noise-free training examples

Consider two possible hypothesis sets

•
$$\mathcal{H}_0$$
: $h(x) = b$

•
$$\mathcal{H}_1 : h(x) = ax + b$$

Which one is better?

Approximation

$$h^{\sharp} = \arg\min_{h \in \mathcal{H}} R(h)$$

Learning

Average hypothesis for \mathcal{H}_0

Average hypothesis for \mathcal{H}_1

... and the winner is?

$$\mathbb{E}_{\mathcal{D}}\left[R(h_{\mathcal{D}})\right] = \text{bias} + \text{variance}$$

bias = 0.50 variance = 0.25

bias ≈ 0.21 variance ≈ 1.68

Moral of this story?

For any particular h^* , we do best by matching the "model complexity" to the "data resources" (not to the complexity of h^*)

Balance between

- increasing the model complexity to reduce bias
- decreasing the model complexity to reduce variance

Just another way to think about the same tradeoffs we saw when considering the VC generalization bound

Approximation-generalization tradeoff

Approximation-generalization tradeoff

Learning curve - A simple model

Learning curve - A complex model

