Interpreting the VC bound

Error

“Complexity” of hypothesis set

dvc



Approximation-generalization tradeoff

Given a set H, find a function h € H that minimizes R(h)

Our goal is to find an h € H that approximates the Bayes classifier, or some true
underlying function

More complex 7 == better chance of approximating
the ideal classifier/function

Less complex 7{ == better chance of generalizing
to new data (out of sample)

We must carefully limit “complexity” to avoid overfitting
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Quantifying the tradeoff

VC generalization bound

R(h) £ Ru(h) + e(H,n)

Alternative approach: Bias-variance decomposition
- noise: how good of a job does the ideal estimate h* do?
- bias: how well can H approximate h*?
- variance: how well can we pick a good h € H ?

R(h) = noise + bias + variance

Bias-variance decomposition easily generalizes to regression



Regression setting

In this treatment, we will assume real-valued observations (i.e., regression) and
consider the squared error

We observe an X € R? and wish to predict Y € R

Given a function h : R — R, we measure its quality via

R(h) = Exy (¥ = h(X))?|

According to this metric, we can show that the optimal choice for A is

h*(X) = E[Y]X]

W (a) = E[Y|X = o] = / oy x (vl dy



Conditional mean minimizes MSE

E|(Y — h(X))®| = E|(Y — E[Y|X] +E[Y|X] - A(X))’|

E [(Y _ E[Y|X])2} + E [(E[Y|X] _ h(X))Q:

+ 2E[(Y — E[Y|X]) (E[Y|X] — h(X))

E[(v - EYIXD?| + E[EIV]X] - h(X))?

E|(Y - E[Y|X])?



Conditional mean minimizes MSE

E[(Y — E[Y|X]) (E[Y|X] — h(X))] =E
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Regression

Now suppose we are given observations
x € R4

D — {(Xl,yl),...,(xmyn)} y e R

Given a class of candidate functions H, we would like to use the data D to select
a function hp € H that is as close as possible to h*(X) = E[Y | X]

Note: We can also think of h*(X) as generating the data via
Y =h(X)+ N

where N represents zero-mean noise



Excess risk in regression

One possible strategy is to select the A € H that minimizes
~ 1 —
Ru(h) = = 3" (i = h(x))?
i=1

Regardless of our regression strategy, we select some hp € H and have

R(hp) = E | (Y — hp(X))?

=E [(Y = i"(X))?| + E | (hn(X) — h*(X))?

\ ] \ )
! Y

Noise variance Re(hp)




1.5

Example

| D={(z1,y1),...,(xn,yn)} |
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Decomposing the excess risk

Re(hp) = Ex | (hp(X) = h*(X))?

\ J
|
/ expected error for a given hp

random (depends onD)

Ep [Re(ho)] = Ep |Ex | (hp(X) = h*(X))?|

= Ex |Ep |(hp(X) — h*(X))?|

\ ]
|

let’s focus on just this term




The average hypothesis

To evaluate
Ep | (hp(X) — h*(X))?

we define the “average hypothesis”

h(X) = Ep [hp(X)]

Interpretation
Imagine drawing many data sets D1, ..., D,

(X))~ = b (X)
p 1=1
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Using the average hypothesis

Ep | (hp(X) = h*(X))?| = Ep | (hn(X) = R(X) + R(X) — h*(X))?]

= Ep :(hD(X) - H(X))Q + (A(X) — h’*(X))Q
+2 (hp(X) = R(X)) (A(X) = h*(X))

— Ep [(hD(X) — E(X))Q} + (h(X) — h*(X))2

Y Y
variance(X) bias(X)



Bias and variance

Plugging this back into our original expression, we get

Ep [Re(hp)] = Ex [ED {(hD(X) - h*(X))QH

= Ex [bias(X) + variance(X)]

— bias + variance



Visualizing the bias

bias = Ex [(B(X) - h*(X))z}




Visualizing the variance

variance = Ey [ED [(hD(X) — E(X))QH

variance



Alternative decomposition of excess risk

In summary, we have gone to a lot of work to show that

Noise variance

A
[ R

E[R(hp)] = E |(V = h*(X))?| 4 E | (hp(X) — h*(X))?

= FE _(Y — h*(X))Q_ -+ bias + variance

Recall ¥ = arg min R(h)
heH

Via essentially the same argument, one can also find a decomposition of the form

E [R(hp)] = E | (Y — h(X))?| + bias + variance

|
Y
k modified

Approximation error




Example: Learning a sine

Suppose h*(x) = sin(mrx) and we get n = 2 noise-free training examples

1.5

Consider two possible
hypothesis sets '

e Ho: h(x) =0 "
e Hi:h(x) =ax+b 0

-0.5

Which one is better?
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Approximation

h* = argmin R(h)
heH

0\/ h]j

-1.5 1 1 1 1 1 1 1 1 1
-1 -08 -06 -04 -02 0 02 04 06 08 1

R(H) =

-1.5 1 1 1 1 1 1 1 1 1
-1 -08 -06 -04 -02 0 02 04 06 08 1

1.5

e

R(W)=1-32=0.196
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Average hypothesis for Ho
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Average hypothesis for H1
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1.5

... and the winner is?

Ep [R(hp)] = bias 4 variance

Ho
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variance = 0.25
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Moral of this story?

For any particular h*, we do best by matching the “model complexity” to the “data
resources” (not to the complexity of h™)

Balance between
 increasing the model complexity to reduce bias
e decreasing the model complexity to reduce variance

Just another way to think about the same tradeoffs we saw when considering the
VC generalization bound



Approximation-generalization tradeoff
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Approximation-generalization tradeoff
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Learning curve - A simple model
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Learning curve - A complex model
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