
Big ideas from last time

Rather than measuring the “size” of      with       , we can instead think about:

Using    , how many ways can we label a dataset?

We call a particular labeling of                   a dichotomy

Using this language, we can answer our question via the growth function             , 

which counts the most dichotomies that     could ever generate on    points

It is easy to see that

• If                       , we say that     can shatter a set of size

• If no set of size    can be shattered by     (                      ) then    is a 

break point



Goal for today

Using Hoeffding’s inequality together with a union bound, we were able to show 

that

What the VC bound gives us is a generalization of the form

supremum: maximum over an infinite set



Supremum

The supremum of a set             is the least element of     that is greater than or 

equal to all elements of     

Sometimes called the least upper bound

Examples

–

–

–

–



Why might this work?

We aim to get a bound on                                         that holds for any            , 

i.e., a bound on

It should not be a shock that we can bound this using the growth function… 

There may be infinitely many            , but      can only generate               unique 

dichotomies

Thus,            can only take at most              different values

Unfortunately,           can still take infinitely many different values, and so there 

are infinitely many   



The key insight (or trick) is to consider two datasets!

We will imagine that in addition to our training data, we have access to a second 

independent dataset (of size    ), which we call the ghost dataset

Can we relate                                          to                                          ? 

Fundamental insight

distribution of

training error



Using the ghost dataset

Suppose (for the moment) that the empirical estimates             and             are 

random variables that are drawn from a symmetric distribution with mean (and 

median)

Consider the following events:

– : the event that

– : the event that

Claim:

Thus



Using the ghost dataset

Unfortunately, the distribution of             and             is binomial (not symmetric) 

so this exact statement doesn’t hold in general, but the intuition is valid

Instead, we have the following bound:

Lemma 1 (Ghost dataset)



Bounding the worst-case deviation

Lemma 2 (Where the magic happens)

Let                                                  . Then

here, the dataset    is fixed

the probability is with respect

to a random partition of    into

two training sets of size



Proof of Lemma 2

It is straightforward to show that

Note that in the probability on the right-hand side, the dataset     is fixed 

Thus, there are only a finite number of dichotomies that     can generate on      

Call this number              

Let                          be classifiers giving rise to these dichotomies



Proof of Lemma 2

Using this observation, we have



Final step

At this point, we have shown

Lemma 3 (Random partitions) 

For any and any ,

Proof follows from a simple lemma (also by Hoeffding)



Thus, for any            , we have that with probability

Putting it all together



Using the VC bound: The VC dimension

We went to a lot of trouble to show that if     is a break point for     , then 

The VC dimension of a hypothesis set    , denoted              , is the largest     for 

which              

• is the most points that      can shatter

• is 1 less than the smallest break point

True for



Examples

• Positive rays:

• Positive intervals:

• Convex sets:

• Linear classifiers in     :



VC dimension of general linear classifiers

For           ,        

In general

We will prove this by showing that                        and 



One direction

Let’s first show that there exists a set of            points in      that are shattered 

Consider the matrix 

Think of each row as the concatenation  

One can show that      is invertible



Can we shatter this data set?

For any                                      , can we find a vector     

satisfying                           ?

Easy! Just make                    and we have 



We can shatter a set of          points

What does this prove?

a)  

b)

 

c)

 

d) None of the above 



To finish the proof

In order to show that                       , we need to show

a) There are           points we cannot shatter 

b) There are            points we cannot shatter

c) We cannot shatter any set of           points 

d) We cannot shatter any set of            points 



The other direction

Take any            points

We have more points than dimensions, so there must be some    for which

where not all       

Consider the dichotomy where the      with              are labeled                        , 

and 

No linear classifier can implement such a dichotomy!



If                                                 , then

This means that 

Thus

Why not?



Interpreting the VC dimension

We have just shown that for a linear classifier in 

How many parameters does a linear classifier in       have?



The usual examples

• Positive rays

–

– 1 parameter                

• Positive intervals

–

– 2 parameters 

• Convex sets

–

– as many parameters as you want



Effective number of parameters

Additional parameters do not always contribute additional degrees of freedom

Example

Take the output of a linear classifier, and then feed this into another linear 

classifier

The parameters     and     are totally redundant 

(they do not allow us to create any new classifiers/dichotomies)



Interpreting the VC bound

“Complexity” of hypothesis set

Error



VC bound in action

How big does our training set need to be?

Just to see how this behaves, let’s ignore the constants and suppose that



VC bound in action

RULE OF THUMB: n > 10 d_vc


	Slide 1: Big ideas from last time
	Slide 2: Goal for today
	Slide 3: Supremum
	Slide 4: Why might this work?
	Slide 5: Fundamental insight
	Slide 6: Using the ghost dataset
	Slide 7: Using the ghost dataset
	Slide 8: Bounding the worst-case deviation
	Slide 9: Proof of Lemma 2
	Slide 10: Proof of Lemma 2
	Slide 11: Final step
	Slide 12: Putting it all together
	Slide 13: Using the VC bound: The VC dimension
	Slide 14: Examples
	Slide 15: VC dimension of general linear classifiers
	Slide 16: One direction
	Slide 17: Can we shatter this data set?
	Slide 18: We can shatter a set of          points
	Slide 19: To finish the proof
	Slide 20: The other direction
	Slide 21: Why not?
	Slide 22: Interpreting the VC dimension
	Slide 23: The usual examples
	Slide 24: Effective number of parameters
	Slide 25: Interpreting the VC bound
	Slide 26: VC bound in action
	Slide 27: VC bound in action

