
Generalization for infinite H

In these notes, we give (most of) a careful proof of one of the most
important results in the theory of machine learning.1 We are given
(randomly generated, independent) data points x1, . . . ,xn labeled
with classes y1, . . . , yn. For each classifier h in our (now infinite) set
of candidates H, the empirical risk is given by

R̂n(h) =
1

n

n∑
i=1

Si, Si =

{
1, h(xi) ̸= yi,

0, h(xi) = yi
.

Recall that the (unknown) true risk of h is simply

R(h) = P [h(X) ̸= Y ] .

This is also sometimes called the generalization error or out of
sample error as it is precisely the probability that h makes a mistake
when given a randomly generated feature vector and label (x, y).

The following result, formulated and proved by Vapnik and Chervo-
nenkis in 1971, gives a bound on the difference between the empirical
risk and the true risk that holds uniformly over all h ∈ H. It of
course depends on the number of data points n and some measure of
the complexity of the set H — the latter is captured by the growth
function mH(2n), which we recall is given by:

mH(2n) =
most dichotomies that H can

generate on any set of 2n points.

Here is the theorem:

1This material comes from the Appendix of Learning from Data by Abu-
Mostafa et al.
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Theorem 1 Let D = {(xi, yi)}ni=1 be a training set consisting of
n independent samples, and let H be an arbitrary ensemble of
classifiers. Then

P
[
sup
h∈H

|R̂n(h)−R(h)| > ϵ

]
≤ 4mH(2n) e

− ϵ2n
8 .

Just as in the finite case, this uniform bound allows us to compare
the classifier we chose from h using empirical risk minimization to
the one we would have chosen given oracle knowledge of the true
risks R(h). If

h♯ = arg inf
h∈H

R(h),

h∗ = arg inf
h∈H

R̂n(h),

then following what we did in the finite case,

|R(h∗)−R(h♯)| ≤ 2 sup
h∈H

|R̂n(h)−R(h)|.

Proving Theorem 1 moves in three steps; we provide a lemma below
for each of these steps:

Step 1. Replace the true risk with the empirical risk of another
independently drawn data set of size n. Lemma 1 below shows that
for the relevant range of ϵ and n,

P
[
sup
h∈H

|R̂n(h)−R(h)| > ϵ

]
≤ 2P

[
sup
h∈H

|R̂n(h)− R̂′
n(h)| >

ϵ

2

]
,

where R̂′
n(h) is the empirical risk for another independent data set

of size n. This allows us to work with the complexity of H rela-
tive to a finite number of data points, allowing us to use things like
dichotomies, shattering numbers, and growth functions.
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Step 2. Replace the two randomly drawn sets of size n with a fixed
set S of size that is randomly partitioned into two sets of size n. We
then look at the worst case S among all choices of 2n vectors in Rd.
Lemma 2 below establishes that

P
[
sup
h∈H

|R̂n(h)− R̂′
n(h)| >

ϵ

2

]
≤ mH(2n)·sup

S
sup
h∈H

P
[
|R̂n(h)− R̂′

n(h)| >
ϵ

2
| S

]
The probabilities on the left and right hand sides above use different
models for generating the random data samples (xi, yi). On the left,
we draw two sets independently of size n, compute the empirical
risks for each, then compare these. On the right, we fix a set S
of 2n points, then randomly divide it in two subsets of size n, and
then compare the empirical risks. We end up considering the worst
(largest) such probability over subsets S of size 2n.

The important part of this step is that we have moved the supremum
over H from inside the probability to outside the probability, while
incurring a cost of only mH(2n).

Step 3. Developing a Hoeffding-like bound for comparing the two
empirical risks above for a fixed h. Lemma 3 tells us that

P
[
|R̂n(h)− R̂′

n(h)| >
ϵ

2
| S

]
≤ 2e−ϵ2n/8,

uniformly, no matter what set S or classifier h we choose.

Theorem 1 just combines these three results. By moving the terms
around, we can state the result as an upper bound on the worst case
generalization error; with probability at least 1− δ, we have

R(h) ≤ R̂n(h) +

√
8

n

(
log(mH(2n)) + log

(
4

δ

))
for all h ∈ H simultaneously.
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The first lemma replaces the true risk with the risk on an independent
data set of size n.

Lemma 1 Suppose that D = {(x1, y1), . . . , (xn, yn)} and that
D′ = {(xn+1, yn+1), . . . , (x2n, y2n)} are independent sets of labeled

training data, and let R̂n(h) be the empirical risk for a classifier

h computed on D, and R̂′
n(h) be the same computed on D′. Then

for ϵ and n such that e−ϵ2n/2 < 1
4
,

P
[
sup
h∈H

|R̂n(h)−R(h)| > ϵ

]
≤ 2P

[
sup
h∈H

|R̂n(h)− R̂′
n(h)| >

ϵ

2

]
.

Note that the condition on ϵ and n is what we need for the bound
in Theorem 1 to be meaningful anyway (i.e., what we need to make
the bound on the probability less than 1).

We will not give a full proof of this lemma, as it is more technical
than enlightening. If you are interested, see Learning from Data
(by Abu-Mostafa et al), Appendix A.1.

We will, however, give some quick reasoning about why it works. It
is clear that R̂n(h) and R̂

′
n(h) are independent identically distributed

random variables with meanR(h). If this distribution was symmetric
around its mean, then R(h) would also be a median:

P
[
R̂n(h) < µ

]
=

1

2
, and P

[
R̂n(h) ≥ µ

]
=

1

2
,

and similarly for R̂′
n(h). Suppose now that R̂n(h) is fixed, and it

happens that |R̂n(h)−R(h)| > ϵ. Under this condition, what is the

probability that |R̂n(h) − R̂′
n(h)| > ϵ? Well, it is at least 1

2
, since

that is the probability that R̂′
n(h) falls on the other side of the mean

4
Georgia Tech ECE 6254 Spring 2024; Notes by M. Bloch, M. A. Davenport, and J. Romberg. Last updated 0:24, January 30, 2024



R(h) as R̂n(h). Thus

P
[
|R̂n(h)− R̂′

n(h)| > ϵ
]
≥ P

[
|R̂n(h)−R(h)| > ϵ

]
· P

[
|R̂n(h)− R̂′

n(h)| > ϵ | |R̂n(h)−R(h)| > ϵ
]

≥ 1

2
P
[
|R̂n(h)−R(h)| > ϵ

]
and the above would hold for all h ∈ H simultaneously.

In general, the distribution of R̂n(h) and R̂′
n(h) will not in general

be symmetric around its mean. But it almost is; these are binomial
random variables, whose means and medians are not too far from one
another. Proving the lemma above in full is basically about cleaning
up this detail.

The second lemma relates the two different probability models; the
one on the left is over two independent draws of size n, the one on the
right is for a fixed data set of size 2n that gets randomly partitioned
into two sets of size n.

Lemma 2 Let S denote a set of (random) samples of size 2n:

S = {(xi, yi), i = 1, . . . , 2n}.

Then

P
[
sup
h∈H

∣∣∣R̂n(h)− R̂′
n(h)

∣∣∣ > ϵ

2

]
≤ mH(2n) sup

S
sup
h∈H

P
[∣∣∣R̂n(h)− R̂′

n(h)
∣∣∣ > ϵ

2
| S

]
,

where the probability on the right-hand side is over a random
partition of S into two training sets of size n, one of which is
used to compute R̂n(h) and the other is used to compute R̂′

n(h).
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Proof First, we condition on the random draw of S ⊂ Rd:

P
[
sup
h∈H

∣∣∣R̂n(h)− R̂′
n(h)

∣∣∣ > ϵ

2

]
=

∫
fX(S)P

[
sup
h∈H

∣∣∣R̂n(h)− R̂′
n(h)

∣∣∣ > ϵ

2
| S

]
dS

Above, we are integrating over the 2n realizations of the xi; the
notation means

fX(S) = fX(x1), . . . , fX(x2n), dS = dx1 · · · dx2n,

where fX(·) is the marginal density for the feature on Rd. Since this
density integrates to 1,

P
[
sup
h∈H

∣∣∣R̂n(h)− R̂′
n(h)

∣∣∣ > ϵ

2

]
≤ sup

S
P
[
sup
h∈H

∣∣∣R̂n(h)− R̂′
n(h)

∣∣∣ > ϵ

2
| S

]
,

where supS is a supremum over all points sets of size 2n in Rd.

Inside the supremum above, the set S is fixed. This means that there
are only a finite number of dichotomies that H can implement on S .
For a particular S , suppose that there arem(S) different dichotomies
possible, realized by h1, . . . , hm. Then applying the union bound,

P
[
sup
h∈H

∣∣∣R̂n(h)− R̂′
n(h)

∣∣∣ > ϵ

2
| S

]
= P

[
max

h∈{h1,...,hm}

∣∣∣R̂n(h)− R̂′
n(h)

∣∣∣ > ϵ

2
| S

]
≤

m(S)∑
m=1

P
[∣∣∣R̂n(hm)− R̂′

n(hm)
∣∣∣ > ϵ

2
| S

]
≤ m(S) max

h∈{h1,...,hm}
P
[∣∣∣R̂n(h)− R̂′

n(h)
∣∣∣ > ϵ

2
| S

]
To make this bound uniform over all S , we use the facts thatm(S) ≤
mH(2n), and that taking the maximum over h1, . . . , hm will of course
give you something no larger than taking the supremum over all
h ∈ H. Thus

P
[
sup
h∈H

∣∣∣R̂n(h)− R̂′
n(h)

∣∣∣ > ϵ

2
| S

]
≤ mH(2n) · sup

S
sup
h∈H

P
[∣∣∣R̂n(h)− R̂′

n(h)
∣∣∣ > ϵ

2
| S

]
.

This establishes the lemma.
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The third and final is very similar to the generalization bound we
developed (in the notes several weeks ago) for a single classifier using
the Hoeffding inequality. The difference here is that we are comparing
the risks between two different random sets of data (instead of one
set of data and its mean), and the randomness is different — the
data points are fixed here and then divided in half at random.

Lemma 3 For any fixed classifier h ∈ H and any fixed set of
2N data points S,

P
[∣∣∣R̂n(h)− R̂′

n(h)
∣∣∣ > ϵ

2
| S

]
≤ 2 exp

(
−ϵ2n

8

)
,

where again the probability is with respect to a random partition
of S into two training sets of size n.

Proof The results follows almost immediately from another classical
lemma by Hoeffding. This Lemma 4 also describes how closely a sum
of random variables is concentrated around its mean, but in this case
the random variables are sampled without replacement from a finite
set. This causes the random variables to be (weakly) dependent on
one another. Nevertheless, the proof of this lemma2 shows that this
probability can be bounded by the independent case.

2See Hoeffding, Probability inequalities for sums of bounded random vari-
ables, 1967.
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Lemma 4 Let A = {a1, . . . , a2n} be a fixed set of binary-valued
points, ai ∈ {0, 1}, and let µ = 1

2n

∑2n
i=1 ai be their center of mass3.

Let {Z1, . . . , Zn} be a set of n points chosen from A uniformly
at random without replacement — this guarantees that the Zi are
unique. Then

P

[∣∣∣∣∣1n
n∑

i=1

Zi − µ

∣∣∣∣∣ ≥ ϵ

]
≤ 2e−2ϵ2n.

With this lemma in place, the result follows quickly. With h fixed,
we take the numbers {ai} above as indicators on whether or not h
makes an error on data point xi:

ai =

{
1, h(xi) ̸= yi
0, h(xi) = yi,

i = 1, . . . , 2n.

We randomly divide the indexes {1, . . . , 2n} into two equal size sets,
I and I ′, and then compute the empirical risk of h over the data in
both sets of these index sets:

R̂n(h) =
1

n

∑
i∈I

an, R̂′
n(h) =

1

n

∑
i∈I ′

an.

Since these are sums over the two partitions of the data, they are
equivalent to the “sampling without replacement” described in the
statement of Lemma 4. Since

µ =
1

2n

2n∑
i=1

an =
R̂n(h) + R̂′

n(h)

2
,

3We are using the term “center of mass” instead of “mean” since these
points are fixed and not random.
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we know that
R̂n(h)− µ = µ− R̂′

n(h),

which means

|R̂n(h)− R̂′
n(h)| = 2|R̂n(h)− µ|.

Then applying Lemma 4 yields

P
[
|R̂n(h)− R̂′

n(h)| >
ϵ

2
| S

]
= P

[
|R̂n(h)− µ| > ϵ

4
| S

]
= 2 exp

(
−ϵ2

8

)
,

which establishes the lemma.
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