
Measuring “richness” in H
Given a hypothesis set H with |H| = m, we have previously shown
that if

h∗ = argmin
h∈H

R̂n(h)

then for any ϵ > 0

P
[∣∣∣R̂n(h

∗)−R(h∗)
∣∣∣ ≥ ϵ

]
≤ 2m exp(−2nϵ2).

The factor m in this bound is the result of the union bound, which
we used to show that for ϵ > 0

P
[∣∣∣R̂n(h

∗)−R(h∗)
∣∣∣ ≥ ϵ

]
≤ P

[
max
h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣ ≥ ϵ

]
≤

m∑
j=1

P
[∣∣∣R̂n(hj)−R(hj)

∣∣∣ ≥ ϵ
]
.

The second inequality can sometimes hold with equality, but this only
occurs when the events Ej = {|R̂n(hj)−R(hj)| ≥ ϵ} are disjoint. In
most practical choices forH, this is rarely the case. This is illustrated
in Fig. 1 below, where the two classifiers shown are distinct but have
exactly the same empirical risk on the training set. Since the two
classifiers are very similar, if one has a large deviation between its
empirical and true risk, we would also expect the other to as well.

This observations suggests that our bound might be extremely loose
and that |H|may not necessarily be the right measure of the richness
of the hypothesis set H. Most of our work in the next two lectures
will be devoted to finding a suitable replacement for |H|, which will
enable use to prove a generalization bound even in settings for which
|H| = ∞, as is the case for linear classifiers.
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h1
h2

Figure 1: Two distinct classsifiers with the same empirical risk

Dichotomies and the growth function

Motivated by the situation in Fig. 1, where multiple (in fact, infinitely
many) different h ∈ H have the same empirical risk, we will attempt
to assess the number of hypotheses that lead to distinct labelings
for a given dataset. Intuitively, we are hoping that the number of
distinct labelings is a quantity that better captures the richness of
the hypothesis class H. For simplicity, we will restrict our attention
for now to the case of binary classification where Y = {+1,−1}.
Formally, for a dataset D = {xi}ni=1, a dichotomy is a particular
labelling of the dataset D, i.e., a particular sequence of n labels of
±1. Given a set of hypotheses H, the set of all possible dichotomies
generated by H on D is the set of labelings that can be generated
by classfiers in H on the dataset, which we denote by

H({xi}ni=1) = {{h(xi)}ni=1 : h ∈ H}.

Note that many sets {{h(xi)}ni=1 for distinct h are actually identical
because the labelings induced on the dataset are identical. By def-
inition, for our binary labeling problem, |H({xi}ni=1)| ≤ 2n and in
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general |H({xi}ni=1)| ≪ |H|. Unfortunately, |H({xi}ni=1)| is not a
particularly useful quantity because it is not only potentially difficult
to compute but also dependent on a specific dataset. This motivates
the definition of the growth function as follows.

For a set of hypotheses H, the growth function of H is

mH(n) = max
{xi}ni=1

|H({xi}ni=1)|.

Note that the growth function depends on the number of datapoints
n but not on the exact datapoints {xi}ni=1. The growth function
measures the maximum number of dichotomies that H can generate
over all possible datasets. By definition, we still have that mH(n) ≤
2n, but we will see that in many cases mH(n) ≪ 2n, that is, no
matter how you choose the xi, you may not be able to achieve all
possible labelings of the data using classifiers in H.

Example: Positive rays
Consider a binary classification problem in R with the set of positive
rays

H = {ha : ha(x) = sign(x− a), a ∈ R}.
Recall that sign(x) is the function

sign(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

As illustrated below, the threshold a defines a classifier such that all
points to the left are assigned label −1 while all points to the right
are assigned label +1.
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h(x) = +1h(x) = −1

x1 x2 xNxN−1
a

Although |H| = ∞, the number of dichotomies is still finite, and one
can actually compute the growth function exactly. In general, this
is challenging because we need to identify the worst case dataset
that generates the highest number of dichotomies; here, this is only
tractable because the situation is simple.

Without losing generality, we can assume that all n points {xi}ni=1

are distinct. Let us introduce x0 = −∞ and xn+1 = ∞. For any
i ≥ 0, all classifiers ha with xi ≤ a < xi+1 induce the same labeling.
Consequently, the number of distinct labelings is at most n + 1 and
mH(n) = n + 1. Interestingly, the growth function is growing poly-
nomially in n, which is much slower than the exponential growth 2n

allowed by the upper bound.

Example: Positive intervals
Consider a binary classification in R with the set of positive intervals

H = {ha,b : ha,b = sign(x− a)− sign(x− b), a < b ∈ R}.
As illustrated below, the thresholds a < b define a classifier such that
all points with [a; b] are assigned label +1 while all points outside are
assigned label −1.

h(x) = +1h(x) = −1

x1 x2 xNxN−1
a

h(x) = −1

b

Again, this is a situation for which we can compute the growth func-
tion exactly. Without loss of generality, we assume that all n data-
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points are distinct and we introduce x0 = −∞ and xn+1 = ∞. We
need to be a bit more careful when counting dichotomies:

� If x0 < a < b ≤ x1, all classifiers ha,b induce a labelling of all
−1’s;

� for any 0 ≤ i < j ≤ n, all classifiers ha,b such that xi ≤ a ≤
xi+1 < xj ≤ b ≤ xj+1 induce the same labelings;

� for any 0 ≤ i ≤ n, all classifiers ha,b such that xi ≤ a < b <
xi+1 induce again a labelling of all −1’s.

Consequently, the number of classifiers is 1 +
(
n+1
2

)
and mH(n) =

n2

2
+ n

2
+ 1, which grows again polynomially in n.

Example: Convex sets
Consider a binary classification in R2 with the set

H = {h : {x ∈ R2 : h(x) = +1} is a convex set}. (1)

Consider a set of n distinct points distributed on the unit circle, as
illustrated below.

Notice that irrespective of the desired labeling of the datapoints, the
datapoints for which h(xi) = +1 define the vertices of a polytope,
which is convex. Said differently, irrespective of the labeling, there
exists h ∈ H that generates the labeling. Therefore, by definition,
mH(n) = 2n.
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The three previous examples are not at all representative of a gen-
eral situation because it is nearly impossible to compute the growth
function exactly in most practical cases. As shown next, even for
linear classifiers this can become a formidable task.

Example: Linear classifiers
Consider a binary classification in R2 with the set of linear classifiers

H = {h : h(x) = sign(w⊺x + b),w ∈ R2, b ∈ R} (2)

The challenge again is to identify the worst case dataset that gen-
erates the most dichotomies. We first note that {x : w⊺x + b =
0} = {x : −w⊺x+ b = 0}, so that a single line actually defines two
classifiers (that differ only in terms of how they label each side).

For n = 3, we need to distinguish two cases. If all three points are
aligned, all dichotomies except those illustrated below are possible,
we therefore obtain six dichotomies.

x1 x2 x3 x1 x2 x3

However, we are interested in the maximum possible number of di-
chotomies. If the three points are not aligned, they form the vertices
of a polytope and any hyperplane cutting the polytope will isolate
one point. In addition, any hyperplane no cutting the polytope will
assign the same label to all three points. Consequently, the number
of dichotomies generated is 8 = 23.

x1

x2

x3

Consequently, mH(3) = 8.
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For n = 4, we need to distinguish even more cases. If all four points
are aligned, all dichotomies except those illustrated below are possible
we therefore obtain 10 dichotomies.

x1 x2 x3 x4 x1 x2 x3 x4

x1 x2 x3 x4 x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

If three out of four points are aligned, the four points form a 3-vertex
polytope, and one point, say x2, is on the edge, say defined by x1

and x3. Any hyperplane cutting through the polytope cannot assign
a label to x2 that is distinct of both x1 and x3. Consequently, the
dichotomies illustrated below cannot be generated and we obtain 12
dichotomies.

x1 x2 x3

x4

x1 x2 x3

x4

x1 x2 x3

x4

x1 x2 x3

x4

If no three out of four points are aligned, the four points could form
a 4-vertex polytope, in which case a hyperplane cutting through the
polytope cannot assign distinct labels to a vertex and all its neigh-
bors. The four points could also form a 3-vertex polytope with a
point in the interior, in which case a hyperplane cutting through the
polytope cannot assign a label to the interior point distinct from all
the vertices. Consequently, the dichotomies illustrated below cannot
be generated and we obtain 14 dichotomies.
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x1

x2

x3

x4

x1

x2

x3

x4

x1
x2

x3

x4

x1
x2

x3

x4

Thus, mH(4) = 14.

This last example illustrates the essentially combinatorial nature of
the calculation of the growth function. As we will soon seen, we will
conveniently only care about the scaling of the growth function with
n – in particular, whether it is polynomial or exponential.

Shattering and break point

Above we introduced the notion of growth function, mH(n), which
characterizes the maximum number of labelings that can be obtained
with a given hypothesis set H over all datasets x⟩

n
i=1

of size n. The
behavior of the growth function as a function of n can be different
depending on the structure of the hypotheses in H, and we saw
examples in which mH(n) grows polynomially or exponentially in n.

The problem of computing mH(n) is often intractable, quickly be-
coming an intricate computational problem that depends not only
on all possible configurations of points in the dataset but also on the
constraints induced by the structure of hypotheses in H. We will
focus instead on determining the behavior of mH(n) as a function of
n, which will conveniently tell us a lot about generalization in a next
lecture.

We start by introducing the notion of shattering and break points. If
a hypothesis set H can generate all dichotomies on {xi}ni=1, we say
that H shatters {xi}ni=1. If no data set of size k can be shattered
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by H, then k is a break point for H. Note that if k is a break
point, any ℓ > k is also a break point.

Example
For a binary linear classifier in R2, we saw that mH(4) = 14 < 16. In
other words, no dataset of size 4 can be shattered by linear classifiers
and k = 4 is a break point.

Although we gave up computing mH(n) for linear classifiers in R2 for
N > 4, it turns out that the existence of break point k is already
enough to for us to bound mH(n) for every n. We will formalize this
shortly, but we first illustrate this point with an example.

Example
Consider a binary classification problem and assume that k = 2 is a
break points for H. How many dichotomies can we generate of set
of size N = 3? Our assumption says that H cannot shatter a set of
size 2, so that no h ∈ H can assign all four possible distinct labelings
to any set of two points.

Consider the table below, which illustrates all possible binary (◦, ■)
labelings on a set size 3.

x1 x2 x3
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As illustrated below, we proceed to eliminate labelings forbidden by
our assumption that k = 2 is breakpoint starting from the top. You
can check for yourself that any other order of labeling would result
in us eliminating the same number of dichotomies.

The first three rows correspond to labelings that do not violate our
assumption. The fourth row has to be excluded because it would
otherwise allow us to shatter a set of size 2, as illustrated by the
gray region. The procedure continues and one can see that only 4
labelings are allowed out of the 8 possible.

The previous example shows that knowing a break point allows us
to reason about the growth function without really knowing much
about H.

Bounding the growth function and Sauer’s lemma

We now formalize the intuition developed above. Assume H has
break point k. DefineB(n, k) as the maximum number of dichotomies
of n points such that no subset of size k can be shattered by the
dichotomies.

Note that B(n, k) is a purely combinatorial quantity, which depends
on the fact that k is a break point for H but otherwise not on the
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specific nature of H. By definition, if k is a break point for H, then
mH(n) ≤ B(n, k).

What makes the definition of B(n, k) useful is that we can bound it
much more easily than mH(n).

Lemma 1 (Sauer’s lemma)

B(n, k) ≤
k−1∑
i=0

(
n

i

)

Proof See Section 2.1.2 of Learning from Data.

If a sum of binomial coefficients isn’t already nice enough for you,
note that

d∑
i=0

(
n

i

)
≤ nd + 1,

and hence B(n, k) ≤ nk−1 + 1. There are many ways to prove this,
but there is an elegant one that uses induction. Specifically, we begin
with the case base of d = 0. In this case we have

0∑
i=0

(
n

i

)
=

(
n

0

)
= 1 ≤ n0 + 1.

Thus, we now assume that the inequality holds up to d− 1, in which
case we have

d∑
i=0

(
n

i

)
=

(
d−1∑
i=0

(
n

i

))
+

(
n

d

)
≤ nd−1 + 1 +

(
n

d

)
.
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Note that (
n

d

)
=

n!

d!(n− d)!

=
n(n− 1)(n− 2) · · · (n− d + 1)

d!
≤ n(n− 1)(n− 2) · · · (n− d + 1)

≤ nd−1(n− 1)

= nd − nd−1.

Plugging this in to the bound above, we obtain

d∑
i=0

(
n

i

)
≤ nd−1 + 1 +

(
n

d

)
≤ nd−1 + 1 + nd − nd−1 = nd + 1,

as desired.
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