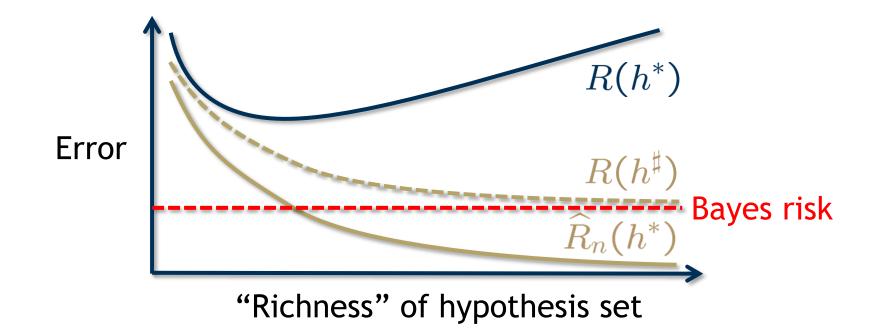
Tradeoffs in learning



Measuring "richness"

Today we will turn back to the question of when we can have confidence that $\widehat{R}_n(h^*) \approx R(h^*)$, but where h^* is chosen from an *infinite* set \mathcal{H}

To keep life (much) simpler, we will restrict our attention to binary classification, but an analogous theory can be developed for other supervised learning problems

• For a single hypothesis, we have

$$\mathbb{P}\left[\left|\widehat{R}_n(h) - R(h)\right| > \epsilon\right] \le 2e^{-2\epsilon^2 n}$$

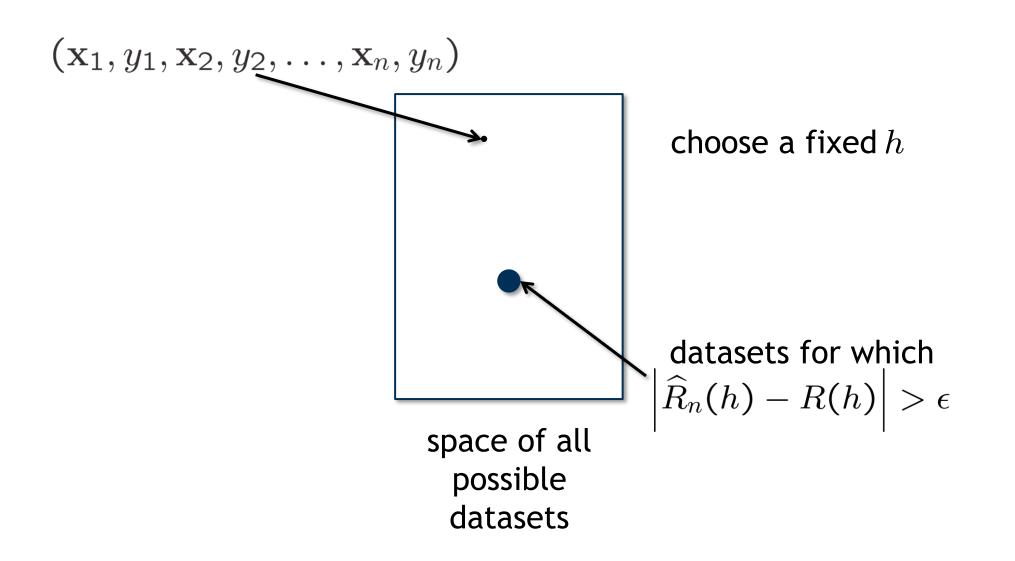
- For $m = |\mathcal{H}|$ hypotheses, and $h^* \in \mathcal{H}$, we have

$$\mathbb{P}\left[\left|\widehat{R}_n(h^*) - R(h^*)\right| > \epsilon
ight] \le 2me^{-2\epsilon^2 n}$$

Where did $m \operatorname{come}$ from?

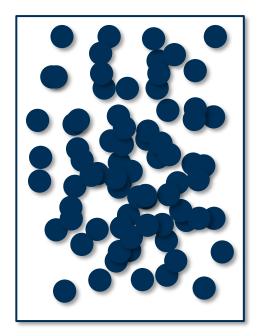
$$\mathbb{P}\left[\left|\widehat{R}_{n}(h^{*}) - R(h^{*})\right| > \epsilon\right] \leq \mathbb{P}\left[\max_{h_{j} \in \mathcal{H}} \left|\widehat{R}_{n}(h_{j}) - R(h_{j})\right| \geq \epsilon\right]$$
$$\leq \sum_{j=1}^{m} \mathbb{P}\left[\left|\widehat{R}_{n}(h_{j}) - R(h_{j})\right| \geq \epsilon\right]$$
$$\mathcal{E}_{j}$$
$$\mathcal{E}_{1}$$
$$\mathcal{E}_{2}$$
$$\mathcal{E}_{1}$$
$$\mathcal{E}_{3}$$
$$\mathcal{E}_{3}$$
$$\mathcal{E}_{3}$$
$$\mathcal{E}_{3}$$

Visualizing Hoeffding

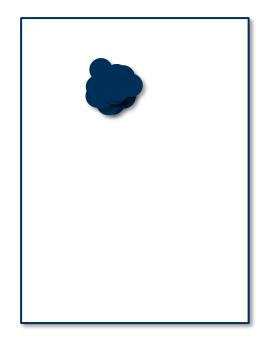


Union bound intuition

Consider many different h at once



An alternative picture

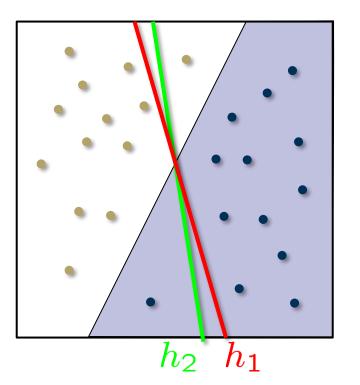


If all the "bad" datasets overlap, maybe we can handle much bigger ${\cal H}$ than the union bound suggests

Do "bad" datasets overlap?

Yes. There is (potentially) tremendous overlap!

 $R(h_1) \approx R(h_2)$ $\widehat{R}_n(h_1) \approx \widehat{R}_n(h_2)$

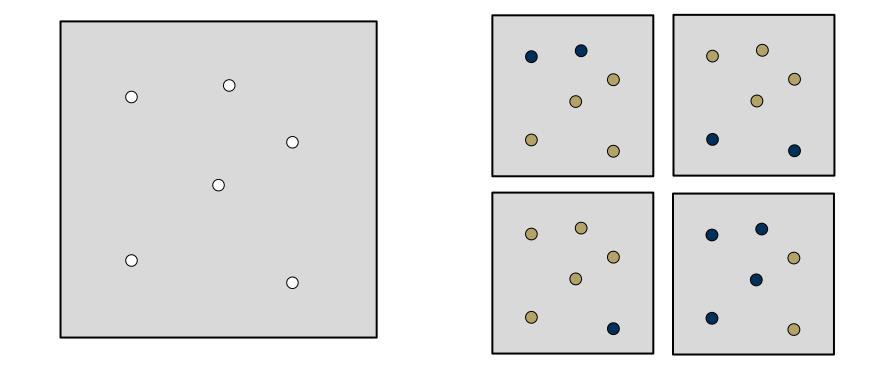


 $|\widehat{R}_n(h_1) - R(h_1)| \approx |\widehat{R}_n(h_2) - R(h_2)|$

If not m, what?

Instead of considering all possible hypotheses in \mathcal{H} we will consider a finite set of input points $\mathbf{x}_1, \ldots, \mathbf{x}_n$ and "combine" hypotheses that result in the same labeling

We will call a particular labeling of $\mathbf{x}_1, \ldots, \mathbf{x}_n$ a *dichotomy*



Hypotheses vs dichotomies

Hypotheses

- $h: \mathcal{X} \to \{-1, +1\}$
- Number of hypotheses $|\mathcal{H}|$ can be infinite

 $|\mathcal{H}|$ (or m) is a poor way to measure "richness" of \mathcal{H}

Dichotomies

- $h: {\mathbf{x}_1, \ldots, \mathbf{x}_n} \to {-1, +1}$
- Number of dichotomies $|\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_n)|$ is at most 2^n

Good candidate for replacing $|\mathcal{H}|$ as a measure of "richness"

The growth function

A dichotomy is defined in terms of a particular $\mathbf{x}_1, \ldots, \mathbf{x}_n$

We would like to be able to state results that hold no matter what $\mathbf{x}_1, \ldots, \mathbf{x}_n$ turn out to be

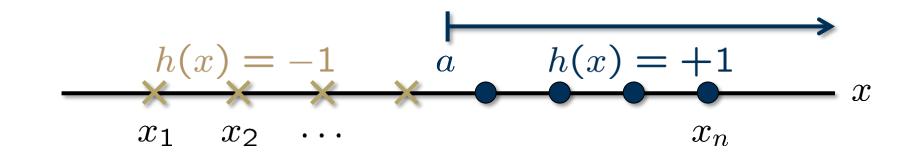
Define the **growth function** of \mathcal{H} as

$$m_{\mathcal{H}}(n) := \max_{\mathbf{x}_1,...,\mathbf{x}_n \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_n)|$$

 $m_{\mathcal{H}}(n)$ counts the *most* dichotomies that can possibly be generated on n points It is easy to see that $m_{\mathcal{H}}(n) \leq 2^n$, but it can potentially be much smaller

Example 1: Positive rays

Candidate functions: $h : \mathbb{R} \to \{-1, +1\}$ such that $h(x) = \operatorname{sign}(x - a)$ for some $a \in \mathbb{R}$

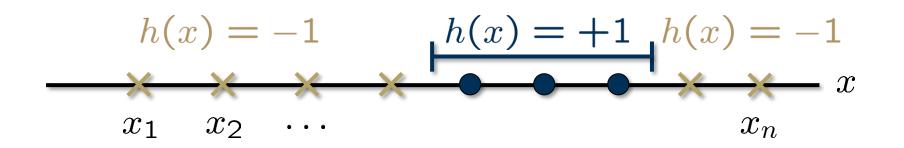


 $m_{\mathcal{H}}(n) = n + 1$

Example 2: Positive intervals

Candidate functions: $h : \mathbb{R} \to \{-1, +1\}$ such that

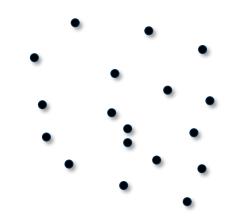
$$h(x) = \begin{cases} +1 & \text{for } x \in [a, b] \\ -1 & \text{otherwise} \end{cases}$$



$$m_{\mathcal{H}}(n) = \binom{n+1}{2} + 1$$
$$= \frac{1}{2}n^2 + \frac{1}{2}n + 1$$

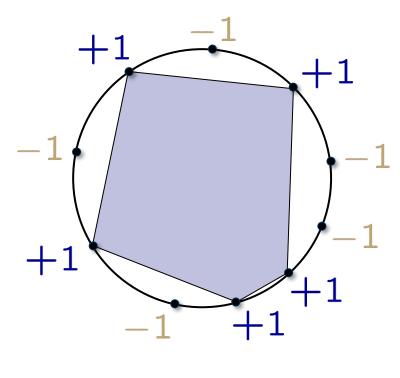
Example 3: Convex sets

Candidate functions: $h : \mathbb{R}^2 \to \{-1, +1\}$ such that $\{\mathbf{x} : h(\mathbf{x}) = +1\}$ is convex



Example 3: Convex sets

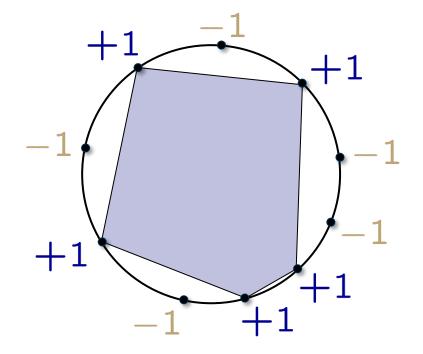
Candidate functions: $h : \mathbb{R}^2 \to \{-1, +1\}$ such that $\{\mathbf{x} : h(\mathbf{x}) = +1\}$ is convex



 $m_{\mathcal{H}}(n) = 2^n$

Example 3: Convex sets

Candidate functions: $h : \mathbb{R}^2 \to \{-1, +1\}$ such that $\{\mathbf{x} : h(\mathbf{x}) = +1\}$ is convex

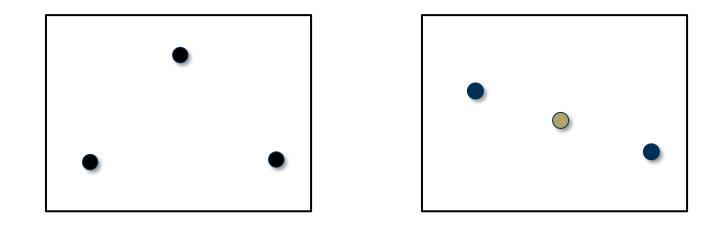


If \mathcal{H} can generate all possible dichotomies on $\mathbf{x}_1, \ldots, \mathbf{x}_n$, then we say that \mathcal{H} *shatters* $\mathbf{x}_1, \ldots, \mathbf{x}_n$

 $m_{\mathcal{H}}(n) = 2^n$

Example 4: Linear classifiers

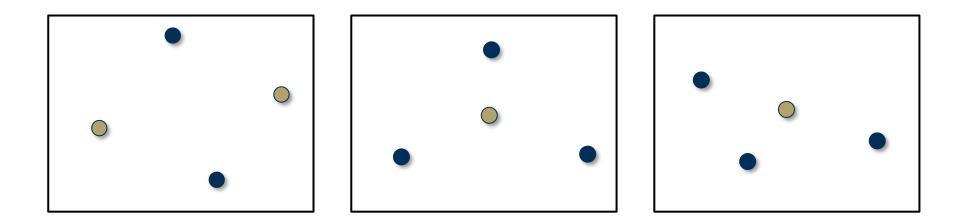
Candidate functions:
$$h : \mathbb{R}^2 \to \{-1, +1\}$$
 such that
 $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$ for some
 $\mathbf{w} \in \mathbb{R}^2$ and $b \in \mathbb{R}$



$$m_{\mathcal{H}}(3) = 2^3$$

Example 4: Linear classifiers

Candidate functions:
$$h : \mathbb{R}^2 \to \{-1, +1\}$$
 such that
 $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$ for some
 $\mathbf{w} \in \mathbb{R}^2$ and $b \in \mathbb{R}$



$$m_{\mathcal{H}}(4) = 14$$

Recap: Example growth functions

• Positive rays: $m_{\mathcal{H}}(n) = n + 1$

• Positive intervals:
$$m_{\mathcal{H}}(n) = \frac{1}{2}n^2 + \frac{1}{2}n + 1$$

- Convex sets: $m_{\mathcal{H}}(n) = 2^n$
- Linear classifiers in \mathbb{R}^2 : $m_{\mathcal{H}}(1) = 2$ $m_{\mathcal{H}}(2) = 4$ $m_{\mathcal{H}}(3) = 8$ $m_{\mathcal{H}}(4) = 14$ $m_{\mathcal{H}}(n) = ?$

Back to the big picture

Recall

$$\mathbb{P}\left[\left|\widehat{R}_n(h^*) - R(h^*)\right| > \epsilon
ight] \le 2me^{-2\epsilon^2 n}$$

Another way to express this is that if you pick a $\,\delta\,,$ then we can guarantee that with probability at least $1-\delta\,$

$$R(h^*) \leq \widehat{R}_n(h^*) + \sqrt{\frac{1}{2n}\log \frac{2m}{\delta}}$$

(Just set $2me^{-2\epsilon^2 n} = \delta$ and solve for ϵ)

If $m \propto e^n$, we have a problem...

No matter how big n gets, $\sqrt{\frac{1}{2n}\log\frac{2m}{\delta}}$ will never get any smaller...

What if...?

What if we can replace m with $m_{\mathcal{H}}(n)$?

In particular, suppose that for any $\delta \in (0, 1)$, we can guarantee that with probability at least $1 - \delta$

$$R(h^*) \leq \widehat{R}_n(h^*) + \sqrt{\frac{1}{2n}\log \frac{2m_{\mathcal{H}}(n)}{\delta}}$$

• If
$$m_{\mathcal{H}}(n) = 2^n$$
 , $\sqrt{rac{1}{2n}\lograc{2m_{\mathcal{H}}(n)}{\delta}}$ is a constant

• If $m_{\mathcal{H}}(n)$ is a polynomial in n, $\sqrt{\frac{1}{2n}\log \frac{2m_{\mathcal{H}}(n)}{\delta}}$ decays like $\sqrt{\frac{\log n}{n}}$

When is learning possible?

Assuming that we will indeed be allowed to substitute $m_{\mathcal{H}}(n)$ for m, we can argue that for a given set of hypotheses \mathcal{H} , learning is possible provided that is a polynomial $m_{\mathcal{H}}(n)$

Key idea: Break points

If no data set of size k can be shattered by \mathcal{H} , then k is a **break point** for \mathcal{H}

 $m_{\mathcal{H}}(k) < 2^k$

If k is a break point, then so is any k' > k

Examples

- Positive rays: $m_{\mathcal{H}}(n) = n + 1$
 - break point: k = 2
- Positive intervals: $m_{\mathcal{H}}(n) = \frac{1}{2}n^2 + \frac{1}{2}n + 1$
 - break point: k = 3
- Convex sets: $m_{\mathcal{H}}(n) = 2^n$
 - break point: $k = \infty$
- Linear classifiers in \mathbb{R}^2 : $m_{\mathcal{H}}(3) = 8$ $m_{\mathcal{H}}(4) = 14$ - break point: k = 4

So what?

If there exists any break point, then $m_{\mathcal{H}}(n)$ is polynomial in n

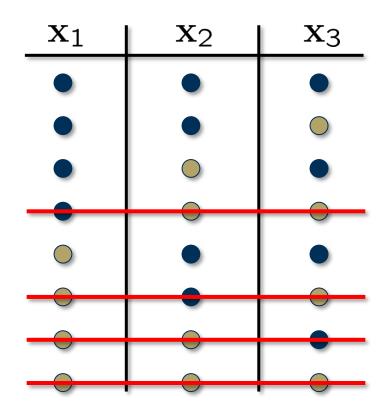
Also, if there are no break points, then $m_{\mathcal{H}}(n) = 2^n$

As soon as we have *a single break point*, this starts eliminating tons of dichotomies

How many dichotomies?

You are given a hypothesis set which has a break point of 2

How many dichotomies can you get on 3 data points?



Bounding the growth function

We want to show that $m_{\mathcal{H}}(n)$ is polynomial in n

We will show that $m_{\mathcal{H}}(n) \leq some$ polynomial

Our approach will center around

maximum number of dichotomies on B(n,k) := n points such that no subset of size kcan be shattered by these dichotomies

B(n,k) is a purely combinatorial quantity

By definition, $m_{\mathcal{H}}(n) \leq B(n,k)$

Sauer's Lemma

Theorem If k is a break point, then

$$m_{\mathcal{H}}(n) \leq B(n,k) \leq \sum_{i=0}^{k-1} \binom{n}{i}$$

In fact, it is actually true that

$$B(n,k) = \sum_{i=0}^{k-1} \binom{n}{i}$$

but all we really need is the upper bound

Examples

$$m_{\mathcal{H}}(n) \leq \sum_{i=0}^{k-1} \binom{n}{i}$$

• Positive rays: Break point of k = 2

$$m_{\mathcal{H}}(n) = n+1 \le n+1$$

• Positive intervals: Break point of k = 3

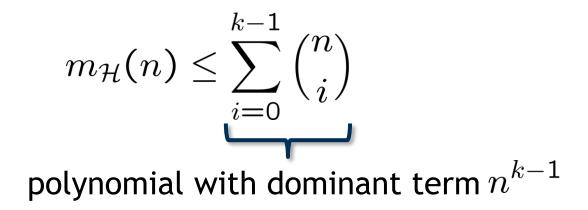
$$m_{\mathcal{H}}(n) = \frac{1}{2}n^2 + \frac{1}{2}n + 1 \le \frac{1}{2}n^2 + \frac{1}{2}n + 1$$

• Linear classifiers in \mathbb{R}^2 : Break point of k=4

$$m_{\mathcal{H}}(n) = ? \leq \frac{1}{6}n^3 + \frac{5}{6}n + 1$$

Bottom line

For a given \mathcal{H} , all we need is for a break point to exist



All that remains is to argue that we can actually replace $|\mathcal{H}|$ with $m_{\mathcal{H}}(n)$ to obtain an inequality along the lines of

$$R(h^*) \leq \widehat{R}_n(h^*) + \sqrt{\frac{1}{2n}\log \frac{2m_{\mathcal{H}}(n)}{\delta}}$$

VC generalization bound

We won't be able to quite show

$$R(h^*) \leq \widehat{R}_n(h^*) + \sqrt{\frac{1}{2n}\log \frac{2m_{\mathcal{H}}(n)}{\delta}}$$

For technical reasons (which we see next time), we will only be able to show that with probability $\geq 1-\delta$

$$R(h^*) \leq \widehat{R}_n(h^*) + \sqrt{\frac{8}{n}\log \frac{4n_{\mathcal{H}}(2n)}{\delta}}$$

This is called the VC generalization bound

Named after Vapnik and Chervonenkis, who proved it in 1971

Key difference

Using Hoeffding's inequality together with a union bound, we were able to show that

$$\mathbb{P}\left[\max_{h\in\mathcal{H}}|\widehat{R}_n(h)-R(h)|>\epsilon
ight]\leq |\mathcal{H}|\cdot 2e^{-2\epsilon^2n}$$

What the VC bound gives us is a generalization of the form

$$\mathbb{P}\left[\sup_{h\in\mathcal{H}}|\widehat{R}_{n}(h)-R(h)|>\epsilon\right]\leq 2\cdot m_{\mathcal{H}}(2n)\cdot 2e^{-\frac{1}{8}\epsilon^{2}n}$$

supremum: maximum over an infinite set

Supremum

The supremum of a set $S \subset T$ is the least element of T that is greater than or equal to all elements of S

Sometimes called the *least upper bound*

Examples

-
$$\sup\{1, 2, 3\} = 3$$

- $\sup\{x : 0 \le x \le 1\} = 1$
- $\sup\{x : 0 < x < 1\} = 1$
- $\sup\{1 - 1/n : n > 0\} = 1$

Next time

Deep Neural Networks Hate Them!

They can turn the **supremum** over an **infinite** set into a **maximum** over a **finite** set <u>and</u> establish powerful generalization bounds using this **ONE WEIRD TRICK**