Error

Tradeoffs in learning

---------'---------------- --------

Bayes risk

“Richness” of hypothesis set

>



Measuring “richness”

Today we will turn back to the question of when we can have confidence that
R,(h*) =~ R(h™), but where h*is chosen from an infinite set H

To keep life (much) simpler, we will restrict our attention to binary classification,
but an analogous theory can be developed for other supervised learning problems

e For a single hypothesis, we have

v Hén(h) - R(h)‘ > e} < De2¢n

« For m = |H| hypotheses, and h* € H, we have

P Hﬁn(h*) — R(h*)

> e} < 2me %€M



Where did m come from?
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(X1, y1,X2,Y2, - . .
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Union bound intuition

Consider many different h at once




An alternative picture

If all the “bad” datasets overlap, maybe we can handle much
bigger H than the union bound suggests



Do “bad” datasets overlap?

Yes. There is (potentially) tremendous overlap!

|Rn(h1) — R(h1)| = |Rn(h2) — R(h2)



If not ™, what?

Instead of considering all possible hypotheses in H
we will consider a finite set of input points x1,...,X,
and “combine” hypotheses that result in the same labeling

We will call a particular labeling of x1, ..., x, a dichotomy
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Hypotheses vs dichotomies

Hypotheses
e h: X —»{-1,41}
« Number of hypotheses |H | can be infinite

|H | (or m) is a poor way to measure “richness” of H

Dichotomies
e h:{x1,...,Xp,} —>{—-1,41}
« Number of dichotomies |H(x1,...,Xy)| is at most 2"

Good candidate for replacing || as a measure of “richness”



The growth function

A dichotomy is defined in terms of a particular x1,...,X,
We would like to be able to state results that hold no matter what x1,...,X, turn
out to be

Define the growth function of H as

my(n) 1= maxX H(x1,...,Xn)]

Xl,---,XnE

m+(n) counts the most dichotomies that can possibly be generated on n points

It is easy to see that my(n) < 2" but it can potentially be much smaller



Example 1: Positive rays

Candidate functions: h : R — {—1, 41} such that
h(x) = sign(x — a) for some a € R

¢« hz) =41
— O

Qj]_ 562 .« o e CUn

my(n) =n-+1



Example 2: Positive intervals

Candidate functions: h : R — {—1, 41} such that

h(z) = +1 forxe.[a,,b]
—1 otherwise




Example 3: Convex sets

Candidate functions: h : R — {—1, 41} such that

{x: h(x) =

1} is convex



Example 3: Convex sets

Candidate functions: h : R — {—1,+1} such that
{x : h(x) = +1} is convex

+1 41

+1



Example 3: Convex sets

Candidate functions: h : R — {—1, 41} such that

+1

{x: h(x) =

+1

my(n)

+1

+1
+1

—_— n

1} is convex

If H{ can generate all
possible dichotomies on

X1,...,Xn, then we
say that H shatters
X1y...9Xp



Example 4: Linear classifiers

Candidate functions: h : R? — {—1, 41} such that
h(x) = sign(w!x 4+ b) for some
w ER? and b €R




Example 4: Linear classifiers

Candidate functions: h : R? — {—1, 41} such that
h(x) = sign(w!x 4+ b) for some
w ER? and b €R

mH(4) =14



Recap: Example growth functions
Positive rays: my(n) = n+ 1
Positive intervals: my(n) = %nz - %n +1

Convex sets: my(n) = 2

Linear classifiers in R%: my (1) = 2

mH(Q) =4
mH(3) = 8
?’I’L’H(4) = 14



Back to the big picture

Recall
P HRn(h*) — R(h*)

> e} < Dme €T

Another way to express this is that if you pick a ¢, then we can guarantee that
with probability at least 1 — §

R(h*) < Rn(h*) + /2 10g 22

2¢€?

(Just set 2me ““"™ = 4 and solve for ¢)

If m oc e”, we have a problem...

No matter how big n gets, \/% log QTm will never get any smaller...



What if... ?

What if we can replace m with my(n)?

In particular, suppose that for any§ € (0, 1), we can guarantee that with
probability at least 1 — §

R(h*) < Ru(h*) + 1/ 2 log 22

e Ifmy(n) =27, \/% log ng(”) is a constant

e If my(n) is a polynomial in n, \/i log ng(n) decays like /Io%



When is learning possible?

Assuming that we will indeed be allowed to substitute m+ (n) for m, we can

argue that for a given set of hypotheses H , learning is possible provided that
is a polynomial my(n)

Key idea: Break points
If no data set of size k can be shattered by H, then k is a break point for H

mq.[(k) < 2k

If k& is a break point, then sois any k' > k



Examples

Positive rays: my(n) =n 4+ 1
- break point: k = 2

Positive intervals: my(n) = %nQ + %n +1
- break point: k = 3

Convex sets: my(n) = 2"
- break point: £k = oo

Linear classifiers in R% m#(3) = 8
mq.[(4) = 14
- break point: £k = 4



So what?

4 )

If there exists any break point,
thenmy (n) is polynomial in n

- /

Also, if there are no break points, then my(n) = 2"

As soon as we have a single break point, this starts eliminating tons of
dichotomies



How many dichotomies?

You are given a hypothesis set which has a break point of 2

How many dichotomies can you get on 3 data points?

X1 X2 X3
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Bounding the growth function

We want to show that my(n) is polynomial in n
We will show that my(n) < some polynomial

Our approach will center around
maximum number of dichotomies on
B(n, k) := mn points such that no subset of size k
can be shattered by these dichotomies

B(n, k) is a purely combinatorial quantity

By definition, my(n) < B(n, k)



Sauer’s Lemma

Theorem If k is a break point, then

() < B k) < 3 (")
1=0

In fact, it is actually true that

=
I
|

B(n.k) = (")

N~
I
O

but all we really need is the upper bound



Examples

T
=

mu(n) <y (")

1

I
O

« Positive rays: Break point of £k = 2
my(n)=n—+1 <n-+1
« Positive intervals: Break point of £k = 3

m%(n)Z%nQ—l—%n—l—lgénz—l—%n—l—l

e Linear classifiers in R?: Break point of k = 4
my(n) = 7 < l'n,?’—l—%n,—l— 1



Bottom line

For a given H, all we need is for a break point to exist

polynomial with dominant term n* !

All that remains is to argue that we can actually replace |H| with my(n) to
obtain an inequality along the lines of

R(h*) < Ru(h*) + /2 log 2220



VC generalization bound

We won’t be able to quite show

R(h*) < Ru(h*) + /2 log 2220

For technical reasons (which we see next time), we will only be able to show that
with probability > 1 — 9

R(h*) < Ra(h*) + /Hhog te2)

This is called the VC generalization bound

Named after Vapnik and Chervonenkis, who proved it in 1971



Key difference

Using Hoeffding’s inequality together with a union bound, we were able to show
that

P [max |§n(h) — R(h)| > e} < |H| - 272
heH
What the VC bound gives us is a generalization of the form

P {Sup |I§n(h) — R(h)| > e] < 2-my(2n) - 2e €M
heH

\

supremum: maximum over an infinite set



Supremum

The supremum of a set .S C T’ is the least element of T’ that is greater than or
equal to all elements of S

Sometimes called the least upper bound

Examples
-sup{1,2,3} =3
-sup{z:0<x<1}=1
-sup{zr:0<x<1l}=1
-sup{l—-1/n:n>0}=1



Next time

Deep Neural Networks Hate Them!

They can turn the supremum
over an infinite set into a

maximum over a finite set
and establish powerful
generalization bounds using

this ONE WEIRD TRICK




	Slide 1: Tradeoffs in learning
	Slide 2: Measuring “richness”
	Slide 3: Where did     come from?
	Slide 4: Visualizing Hoeffding
	Slide 5: Union bound intuition
	Slide 6: An alternative picture
	Slide 7: Do “bad” datasets overlap?
	Slide 8: If not     , what?
	Slide 9: Hypotheses vs dichotomies
	Slide 10: The growth function
	Slide 11: Example 1: Positive rays
	Slide 12: Example 2: Positive intervals
	Slide 13: Example 3: Convex sets
	Slide 14: Example 3: Convex sets
	Slide 15: Example 3: Convex sets
	Slide 16: Example 4: Linear classifiers
	Slide 17: Example 4: Linear classifiers
	Slide 18: Recap: Example growth functions
	Slide 19: Back to the big picture
	Slide 20: What if… ?
	Slide 21: When is learning possible?
	Slide 22: Examples
	Slide 23: So what?
	Slide 24: How many dichotomies?
	Slide 25: Bounding the growth function
	Slide 26: Sauer’s Lemma
	Slide 27: Examples
	Slide 28: Bottom line
	Slide 29: VC generalization bound
	Slide 30: Key difference
	Slide 31: Supremum
	Slide 32: Next time

