
Tradeoffs in learning

“Richness” of hypothesis set

Error

Bayes risk



Measuring “richness”

Today we will turn back to the question of when we can have confidence that

, but where     is chosen from an infinite set  

To keep life (much) simpler, we will restrict our attention to binary classification, 

but an analogous theory can be developed for other supervised learning problems

• For a single hypothesis, we have

• For                hypotheses, and             , we have



Where did     come from?



Visualizing Hoeffding

space of all

possible

datasets

datasets for which

choose a fixed



Union bound intuition

Consider many different    at once



An alternative picture

If all the “bad” datasets overlap, maybe we can handle much 

bigger     than the union bound suggests



Do “bad” datasets overlap?

Yes. There is (potentially) tremendous overlap!



If not     , what?

Instead of considering all possible hypotheses in     

we will consider a finite set of input points 

and “combine” hypotheses that result in the same labeling 

We will call a particular labeling of                   a dichotomy



Hypotheses vs dichotomies

Hypotheses 

•

• Number of hypotheses       can be infinite

(or    ) is a poor way to measure “richness” of  

Dichotomies

•

• Number of dichotomies                            is at most

Good candidate for replacing        as a measure of “richness” 



The growth function

A dichotomy is defined in terms of a particular

We would like to be able to state results that hold no matter what                   turn 

out to be 

Define the growth function of      as 

counts the most dichotomies that can possibly be generated on     points

It is easy to see that                      , but it can potentially be much smaller



Example 1: Positive rays

Candidate functions:                                  such that

for some



Example 2: Positive intervals

Candidate functions:                                  such that



Example 3: Convex sets

Candidate functions:                                    such that

is convex



Example 3: Convex sets

Candidate functions:                                    such that

is convex



Example 3: Convex sets

Candidate functions:                                    such that

is convex

If      can generate all

possible dichotomies on

                 , then we

say that      shatters 



Example 4: Linear classifiers

Candidate functions:                                    such that 

for some

and



Example 4: Linear classifiers

Candidate functions:                                    such that 

for some

and



Recap: Example growth functions

• Positive rays:

• Positive intervals:

• Convex sets:

• Linear classifiers in     :



Recall

Another way to express this is that if you pick a    , then we can guarantee that 

with probability at least

(Just set                          and solve for   )

If             , we have a problem…

No matter how big     gets,                      will never get any smaller… 

Back to the big picture



What if we can replace      with             ?

In particular, suppose that for any                 , we can guarantee that with 

probability at least

 

• If                       ,                           is a constant

• If              is a polynomial in    ,                            decays like

 

What if… ?



Assuming that we will indeed be allowed to substitute for    , we can 

argue that for a given set of hypotheses     , learning is possible provided that             

is a polynomial

Key idea: Break points

If no data set of size    can be shattered by    , then    is a break point for    

If    is a break point, then so is any 

When is learning possible?



Examples

• Positive rays:

– break point:

• Positive intervals:

– break point:

• Convex sets:

– break point:

• Linear classifiers in     :

– break point: 



Also, if there are no break points, then

As soon as we have a single break point, this starts eliminating tons of 

dichotomies

If there exists any break point,

then             is polynomial in   

So what?



How many dichotomies?

You are given a hypothesis set which has a break point of 2

How many dichotomies can you get on 3 data points?



Bounding the growth function

We want to show that              is polynomial in

We will show that                   some polynomial

Our approach will center around

is a purely combinatorial quantity

By definition, 

maximum number of dichotomies on

   points such that no subset of size   

can be shattered by these dichotomies



Sauer’s Lemma

Theorem If    is a break point, then

In fact, it is actually true that                                

but all we really need is the upper bound



Examples

• Positive rays: Break point of

• Positive intervals: Break point of

• Linear classifiers in     : Break point of



Bottom line

For a given    , all we need is for a break point to exist

All that remains is to argue that we can actually replace with              to 

obtain an inequality along the lines of

polynomial with dominant term    



VC generalization bound

We won’t be able to quite show

For technical reasons (which we see next time), we will only be able to show that 

with probability 

This is called the VC generalization bound 

Named after Vapnik and Chervonenkis, who proved it in 1971 



Key difference

Using Hoeffding’s inequality together with a union bound, we were able to show 

that

What the VC bound gives us is a generalization of the form

supremum: maximum over an infinite set



Supremum

The supremum of a set             is the least element of     that is greater than or 

equal to all elements of     

Sometimes called the least upper bound

Examples

–

–

–

–



Next time

Deep Neural Networks Hate Them!

They can turn the supremum

over an infinite set into a 

maximum over a finite set 

and establish powerful 

generalization bounds using 

this ONE WEIRD TRICK
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