
A framework for supervised learning

One of the main objectives of the course is to understand why and
how we can learn. Although we all have an intuitive understanding of
what learning means, making clear mathematical statements requires
us to explicitly specify the components of a learning model. Without
such clear statements, it would be hard to reason about learning and
we would not be able to design an engineering methodology.

Supervised learning model

Suppose that we observe data (xi, yi) for i = 1, . . . , n, where thexi ∈
Rd are the feature vectors and the yi ∈ Y are the labels. The
data are assumed to be random, in that they are independent samples
generated from some joint probability distribution on Rd×{0, 1}, but
nothing is known about this probability distribution a priori.

We will use this data to estimate a function h(x) that takes a feature
vector and returns a label. We can think of it as a map Rd → Y . In
the case where Y is discrete, we can also think of h as a partition of
Rd into distinct regions, each of which corresponds to x that map to
a particular (discrete) label. A simple abstraction of the supervised
learning model is to consider a set of possible hypotheses H. Our
goal is to use the data to select an “optimal” h ∈ H.

This is most commonly done by choosing the h that minimizes some
loss function. In the case of classification, we would ideally take
this loss function to be the probability of error, which is often called
the risk (or population risk):

R(h) = P [h(X) ̸= Y ] .

The risk tells us what the long-term performance of h will be. With-
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out knowledge of the distribution, however, we cannot compute the
risk, so instead we might aim to minimize the empirical risk. In
the classification setting, this simply means that we choose the h ∈ H
that minimizes the number of misclassifications in the training data.
The empirical risk of a candidate classifier h working from the n
samples {(xi, yi)}ni=1 is

R̂n(h) =
|{i : h(xi) ̸= yi}|

n
.

In short, R̂n(h) is the fraction of the n training samples that h mis-

classifies. The empirical risk R̂n(h) should be thought of as an esti-
mate for the true risk R(h); by the weak law of large numbers, we

know that R̂n(h) → R(h) as n → ∞.

A first look at generalization: Can we learn?

A key goal in learning is that we want to find a function h ∈ H
that generalizes. That is, we do not simply want to memorize the
dataset (i.e., achieve low empirical risk), but we want to accurately
predict labels of unseen samples (i.e., achieve low population risk).
Below, we will take a first look at the theory of generalization for the
binary supervised classification problem.

To start, we will assume that we only have a finite number of choices
for this classifier. We will use the data to decide on one of the
classifiers in the set

H = {h1, h2, . . . , hm}.

A natural approach to learning, which we have already alluded to
above, is known as empirical risk minimization, i.e., finding
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the h ∈ H with smallest empirical risk:

h∗ = argmin
h∈H

R̂n(h) (our classifier chosen by ERM).

Of course, h∗ by definition will have the best performance of all
h ∈ H on the training data. A crucial question, however, is to
what degree this guarantees good performance in the future. In
other words, when does low empirical risk provide assurance that
the population risk is also small?

A direct analysis is a little tricky since h∗ depends on the (random)
data in a rather complicated way, but it turns out that we can analyze
this in a fairly straightforward way by first considering the case of a
single fixed h.

How close is the empirical risk to the true risk?

We will start by getting a feel for how well we can assess the risk for
a particular classifier. With h fixed, we will be looking for a bound
on R̂n(h)− R(h). We can compute R̂n(h) from the data, but R(h)
is unknown.

At this point, it is critical to realize that R̂n(h) is a random variable,
as it depends on the data (xi, yi) which is random. So our bounds
will be probabilistic; we want something of the form

P
[
|R̂n(h)−R(h)| ≤ ϵ

]
≥ ??,

or
P
[
|R̂n(h)−R(h)| ≥ ϵ

]
≤ ??.

In both cases, the bound will depend on ϵ (as well as the number of
data points n); in the first case, we are looking for the right hand
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side to be close to 1, in the second case, we are looking for the right
hand side to be close to 0.

To get the bound, we will show that R̂n(h) is a sum of independent

random variables (this is easy), then show that E[R̂n(h)] = R(h)
(also easy), and then develop a general-purpose probabilistic tail
bound that quantifies how such a sum concentrates around its mean
(this is hard).

We start by re-writing the empirical risk as a sum of independent
random variables. Let

Si =

{
1, h(xi) ̸= yi,

0, h(xi) = yi.

Since the (xi, yi) are independent and identically distributed, the Si

are independent Bernoulli random variables with

P [Si = 1] = P [h(xi) ̸= yi] , P [Si = 0] = 1− P [h(xi) ̸= yi] .

A simple calculation reveals that

E[Si] = R(h).

By construction,

R̂n(h) =
1

n

n∑
i=1

Si, (1)

and so

E[R̂n(h)] =
1

n

n∑
i=1

E[Si] = R(h).

We are left with the question: How close is the sum of independent
random variables 1

n

∑
i Si to its mean?
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An answer to this question is given by the Hoeffding inequality:

Hoeffding Inequality. Let X1, . . . , Xn be independent ran-
dom variables that are bounded, meaning a ≤ Xi ≤ b with prob-
ability 1. Let Zn =

∑n
i=1Xi. Then for any ϵ ≥ 0,

P [|Zn − E[Zn]| ≥ ϵ] ≤ 2e−2ϵ2/n(b−a)2. (2)

Applying this to R̂n(h) in (1), with a = 0, b = 1, we have

P
[
|nR̂n(h)− nR(h)| ≥ nϵ

]
≤ 2e−2nϵ2,

and so
P
[
|R̂n(h)−R(h)| ≥ ϵ

]
≤ 2e−2nϵ2. (3)

This gives us insight into how the performance of one single clas-
sification rule on the training set generalizes. What we want is some
assurance that the one we actually judge to be the best, by perform-
ing ERM on the data, will satisfy something similar. We will get
this assurance by developing a similar probability bound that holds
uniformly over all classifiers in H.
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Bounding the risk of the empirical minimizer

We have linked the performance of a single, fixed classifier to the
amount of data n that we have seen. By re-arranging the main
result (3) from the previous section,1 we see that with probability at
least 1− δ,

|R̂n(h)−R(h)| ≤
√

1

2n
log(2/δ).

But since our decision on which classifier was the best depended on
the empirical risk of all of the classifiers in H, we would like to make
sure that their empirical performance was somewhat near their ideal
performance. That is, we want to show that

max
h∈H

|R̂n(h)−R(h)| ≤ ϵ, (4)

with probability at least 1− δ for some appropriate choice of ϵ and
δ. We want to fill in the right hand side of

P
[
max
h∈H

|R̂n(h)−R(h)| > ϵ

]
≤ ???.

We do this by applying the union bound to our expression for
a single classifier. Recall the following fact from basic probability
theory: if A1, . . . ,Am are arbitrary events, then the probability of

1Specifically, note that we can rewrite (3) as

P
[
|R̂n(h)−R(h)| ≤ ϵ

]
≥ 1− 2e−2nϵ2.

If we set the right-hand-side to be equal to 1−δ and solve for ϵ we obtain:

1−2e−2nϵ2 = 1−δ ⇒ e−2nϵ2 = δ
2

⇒ −2nϵ2 = log
(
δ
2

)
⇒ ϵ =

√
1
2n
log

(
2
δ

)
.
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at least one of them occurring is less than the sum of their individual
probabilities, i.e.,

P [A1 or A2 or · · · Am] ≤ P [A1] + P [A2] + · · · + P [Am] .

As you know, the bound above holds with equality when the sets Ai

are disjoint.

We can rewrite the event of interest as{
max
h∈H

|R̂n(h)−R(h)| > ϵ

}
=

{
|R̂n(h1)−R(h1)| > ϵ

}
or{

|R̂n(h2)−R(h2)| > ϵ
}

or
... ...{

|R̂n(hm)−R(hm)| > ϵ
}
.

Thus

P
[
max
h∈H

|R̂n(h)−R(h)| > ϵ

]
≤

m∑
j=1

P
[
|R̂n(hj)−R(hj)| > ϵ

]
≤ 2me−2nϵ2.

Since this is a bound on the maximum deviation, it applies to the
empirical risk minimizer h∗. As before, we can also rearrange this to
be a guarantee of the form that

|R̂n(h
∗)−R(h∗)| ≤

√
1

2n
(logm + log(2/δ))

with probability at least 1− δ.
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A second look at generalization: Can we learn
well?

Above we showed that R̂n(h
∗) is (potentially) a good predictor of

R(h∗). However, there is a second question that is of crucial impor-
tance: is R(h∗) actually good? Of course, how small R(h∗) can be
is dictated to a degree by how “rich” the set H is, and also (as we
will see soon) by fundamental characteristics of the underlying dis-
tribution that defines our training data, so it may not be reasonable
to expect R(h∗) ≈ 0. However, what is reasonable to hope for is
that R(h∗) is not too much bigger than the risk of the best possible
classifier in H:

h♯ = argmin
h∈H

R(h) (best possible classifier).

Note that h♯ is selected by minimizing the true (population) risk.
This is not something we can expect to do from training data, as the
empirical risk is an imperfect measure of the population risk. We
are interested in R(h∗)−R(h♯) — sometimes called the excess risk,
this is the difference in the long-term performance of the classifier we
have chosen and the best we could have chosen.

When the bound (4) holds, we can relate the generalization perfor-
mance of the empirical risk minimizer h∗ to the performance of the
best possible choice h♯. We have2

R(h∗)−R(h♯) = R(h∗)− R̂n(h
∗) + R̂n(h

∗)−R(h♯)

≤ |R(h∗)− R̂n(h
∗)| + |R̂n(h

∗)−R(h♯)|

The first term above is immediately controlled by (4). For the second
term, we combine (4) with optimality of h♯ and h∗ in two different

2Note that R(h∗)−R(h♯) will always be positive.
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ways. Since h♯ is the minimizer of the true risk,

R(h♯) ≤ R(h∗) ≤ R̂n(h
∗) + ϵ,

and since h∗ is the minimizer of the empirical risk,

R̂n(h
∗) ≤ R̂n(h

♯) ≤ R(h♯) + ϵ.

Combining the two statements above gives us |R̂n(h
∗)−R(h♯)| ≤ ϵ,

and so

max
h∈H

|R̂n(h)−R(h)| ≤ ϵ ⇒ R(h∗)−R(h♯) ≤ 2ϵ.

Putting it all together gives us our main result:

P
[
R(h∗)−R(h♯) > ϵ

]
≤ 2me−nϵ2/2,

or equivalently, with probability at least 1− δ, we have:

R(h∗)−R(h♯) ≤
√

2

n
(logm + log(2/δ)).

ERM with finite H. Let H be a set of classifiers with finite
size |H| = m. We are presented with n i.i.d. labeled data points
{(xi, yi)}ni=1. Let h

∗ be the empirical risk minimizer,

h∗ = argmin
h∈H

R̂n(h) = argmin
h∈H

|{i : h(xi) ̸= yi}|
n

,

and h♯ be the true risk minimizer

h♯ = argmin
h∈H

R(h) = argmin
h∈H

P [h(X) ̸= Y ] .

Then with probability exceeding 1− δ

R(h∗)−R(h♯) ≤
√

2

n
(logm + log(2/δ)).
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Technical Details: Proof of the Hoeffding Ineq.

We start with a basic question: how close is a single random variable
X to its mean? This question is answered by applying the following
basic result from probability theory.

Markov inequality. Let X be any non-negative random vari-
able. Then for any t ≥ 0,

P [X ≥ t] ≤ E[X ]

t
.

Proof of this statement is straightforward. For convenience, we as-
sume here that X is continuous with a probability density function
fX(x), but the result holds regardless:

E[X ] =

∫ ∞

0

x fX(x) dx

≥
∫ ∞

t

x fX(x) dx (for t ≥ 0)

≥ t

∫ ∞

t

fX(x) dx

= t · P [X ≥ t] .

(Note that this is a slightly different proof than presented in class.
This is probably simpler if the “integrating the tail” trick to compute
the expectation is new to you.)

The Markov inequality actually tells us much more than what is in
the box above. It is easily extended by realizing that for any function
ϕ(x) which is non-negative and strictly monotonically increasing,

P [X ≥ t] = P [ϕ(X) ≥ ϕ(t)] .

10
Georgia Tech ECE 6254 Spring 2024; Notes by M. Bloch, M. A. Davenport, and J. Romberg. Last updated 13:05, January 22, 2024



We now have any number of ways to modify the bound, as

P [X ≥ t] ≤ E[ϕ(X)]

ϕ(t)
,

for any such ϕ. Moreover, the above holds for general random vari-
ables X , as we only need ϕ(X) ≥ 0 to apply Markov.

AChernoff bound is simply an application of Markov with ϕ(t) =
eλt for some λ > 0:

P [X ≥ t] ≤ e−λt E[eλX ].

This is particularly useful when X is a sum of independent random
variables. For instance, suppose that Z1, Z2, . . . , Zn are i.i.d. random
variables. Then the Chernoff bound on their sum is

P [Z1 + · · · + Zn ≥ t] ≤ e−λt E[eλ(Z1+···+Zn)]

= e−λt E[eλZ1eλZ2 · · · eλZn]

= e−λt E[eλZ1]E[eλZ2] · · ·E[eλZn] (independence)

= e−λt
(
E[eλZ1]

)n
(identically dist.).

Thus we can get a tail bound on the sum by looking at moment
generating function (mgf) of one of the terms. Recall that the mgf
is the Laplace transform of the density:

mgfZ(λ) = E[eλZ] =
∫

eλzfZ(z) dz.

To get (2), Hoeffding proved the following lemma:
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Let Z be a random variable that falls in the interval [a, b] with
probability 1. Then

E
[
eλ(Z−E[Z])

]
≤ e−λ2(b−a)2/8,

for all λ > 0.

Proof of this is not so straightforward, but in the end it just relies on
the convexity of the function eλt combined with the Taylor theorem.
The proof is done nicely on Wikipedia3.

Now if Z1, Z2, . . . , Zn are i.i.d. and fall in [a, b], we have

P

[
n∑

i=1

Zi − E[Zi] > t

]
≤ e−λtenλ

2(b−a)2/8, for all λ > 0.

The value of λ that minimizes the right hand side above is

λ =
4t

n(b− a)2
,

and so plugging this in a simplifying gives us

P

[
n∑

i=1

Zi − E[Zi] > t

]
≤ e−2t2/n(b−a)2.

3https://en.wikipedia.org/wiki/Hoeffding%27s_lemma
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