
Another approach

You watch me do this trick a couple times and notice I always hand out 5 cards

Suppose you instead consider

Now, can you learn a function such that          is a reliable predictor of    ?



Probability to the rescue!

Any    agreeing with the training data may be possible

but that does not mean that any    is equally probable

A short digression

• Suppose that Javier has a biased coin, which lands on heads with some unknown 

probability 

–

–

• Javier toss the coin    times 

–

Does      tell us anything about    ?



What can we learn from    ?

Given enough tosses (large   ), we expect that 

Law of large numbers

as

Clearly, at least in a very limited sense, we can learn something about     from 

observations

There is always the possibility that we are totally wrong, but given enough data, 

the probability should be very small



Connection to learning

Coin tosses: We want to estimate (i.e., predict how likely a “heads” is)

Learning: We want to estimate a function

Suppose we have a hypothesis     and that     is discrete

Think of the             as a series of independent coin tosses, where the             are 

drawn from a probability distribution

– heads: our hypothesis is correct, i.e.,  

– tails: our hypothesis is wrong, i.e., 

Define 

(Population) risk: 

Empirical risk:



Trust, but verify

The law of large numbers guarantees that as long as we have enough data, we will 

have that

This means that we can use             to verify whether     was a good hypothesis

Unfortunately, verification is not learning

• Where did     come from?

• What if          is large?

• How do we know if           , or at least, if                        ?

• Given many possible hypotheses, how can we pick a good one?



From coins to learning

Consider an ensemble of many hypotheses

If we fix a hypotheses      before drawing our data, then the law of large numbers 

tells us that

However, it is also true that for a fixed    , if      is large it can still be very likely 

that there is some hypothesis       for which              is still very far from



Example

Question 1: If I toss a fair coin 10 times, what is the 

probability that I get 10 heads?

Question 2: If I toss 1000 fair coins 10 times each, what is

the probability that some coin will get 10 heads?

This illustrates the fundamental challenge of multiple hypothesis testing



…and back to learning

If we have many hypotheses (large    ), then 

even though for any fixed hypothesis     it is likely that 

it is also likely that there will be at least one hypothesis      where              is very 

different from   

Can we adapt our approach to handle many hypotheses?



A first model of learning

Let’s restrict our attention to binary classification

– our labels belong to                      (or                           )

We observe the data 

where each 

Suppose we are given a list of possible hypotheses

From the training data  , we would like to select the best possible hypothesis 

from   



Example



Empirical risk

Recall our definition of risk and its empirical counterpart

Risk: 

Empirical risk:

The empirical risk              gives us an estimate of the true risk           , and from 

the law of large numbers we know that                              as

We should be able to use the empirical risk to choose a good hypothesis



Empirical risk minimization (ERM)

We want to choose a hypothesis from       that achieves a small risk

Since              is supposed to be a good estimate of           , an incredibly natural 

(and common) strategy is to pick

Aside: 



The risk in ERM

As long as we have enough data, for any particular hypothesis , we expect

However, if      is very large, then we can also expect that there are some       for 

which

Thus, what can we say about            ?

• We know that               is as small as it can be

– this could be because            is small

– or, it could be because                               for some 

• Which explanation is more likely?

– it depends… just how large is     ?



Confidence bounds

One way to provide guarantees for the ERM approach is to set     and    such that 

for all    (and for some suitably small choice of   )

Of course, we can never guarantee that this holds, so instead we will be concerned 

with the probability that 

distribution of



Ultimately, we will want to show something like

for all 

What is random here?

– the training data  

– , because each depends on

– , because it depends on

In order to tease all of this apart, let’s begin by going back to just a single 

hypothesis      and studying

Too much randomness?



Bounding the error

We want to calculate

Note that              is a random variable

– we can write where the      are Bernoulli random variables

– thus,                 is a Binomial random variable

– since                                                               , we have that



Deviation from the mean

Thus, an equivalent way to think about our problem is that we would like to 

calculate

and this is just asking about the probability that a Binomial random variable will be 

within      of its mean

If          represents the cumulative distribution function (CDF) of our binomial 

random variable, then we can write



Bounding the deviation

Unfortunately, the CDF we are interested in is given by

This has no nice closed form expression, and is rather unwieldy to work with and 

doesn’t give us much intuition

Instead of calculating the probability exactly, it is enough to get a good bound of 

the form

or equivalently



Concentration inequalities

An inequality of the form

tell us how a particular random variable (in this case             ) concentrates

around its mean

There are many different concentration inequalities that give us various bounds 

along these lines

We will start with a very simple one, and then build up to a stronger result



Markov’s inequality

The simplest of these results is Markov’s inequality

Let      be any nonnegative random variable.  

Then for any          ,

This is cool on its own, but can be leveraged to say even 

more since for any strictly monotonically increasing and

nonnegative-valued function 



Chebyshev’s inequality

As an example, Chebyshev’s inequality

states that for any random variable    ,

Proof. 

Note that                     is a nonnegative random 

variable. Thus we can apply Markov’s inequality to obtain



Proof of Markov (Part 1)

There is a simple proof of Markov if you know the (super useful!) fact that for any 

nonnegative random variable

Proof. We can write

where

Thus



We can visualize this result as

Thus, we can immediately see that we must have

and hence

Proof of Markov (Part 2)



Hoeffding’s inequality

Chebyshev’s inequality gives us the kind of result we are after, but it is too loose

to be of practical use

Hoeffding’s inequality assumes a bit more about our random variable beyond 

having finite variance, but gets us a much tighter and more useful result:

Let                     be independent bounded random variables, i.e., random variables 

such that                                for all

Let                          . Then for any          , we have                     



Chernoff’s bounding method

To prove this result, we will use a similar approach as in Chebyshev’s inequality

To begin consider only the upper tail inequality:

(Markov)

(Independence)



Hoeffding’s Lemma

It is not obvious, but also not too hard to show, that

(proof uses convexity and then gets a bound using a Taylor series expansion)

Plugging this in, we obtain that for any           , we have

By setting                               , we have



Putting it all together

Thus, we have proven that

An analogous argument proves

Combined, these give



Special case: Binomials

If the      are Bernoulli random variables, then      is a Binomial random variable 

and Hoeffding’s inequality becomes

Finally going back to our original problem, this means that Hoeffding yields the 

bound  



Multiple hypotheses

Thus, after much effort, we have that for a particular hypothesis    , 

However, we are ultimately interested in    , not just a single hypothesis

One way to argue that                                      is to ensure that  

simultaneously for all

Equivalently, we can try to bound the probability that any hypothesis     has an 

empirical risk that deviates from its mean by more than



Formal statement

We can express this mathematically as

We can bound this using something called the union bound



Union bound

Union bound For any sequence of events

The events in our case are given by  



Final result



Interpretation

We went through all of this work to show that

This suggests that ERM is a reasonable approach as long as isn’t too big 

(i.e., )

Note that the above is equivalent to the statement that with probability at 

least          ,

linearly

increasing

exponentially

decreasing



Bounding the excess risk

Note that we would ideally actually like to choose

We can also relate the performance of     to     :

We have already shown that with probability at least 

What about                               ? 



Bounding the excess risk

We will bound                               in two steps…

• cannot be too much bigger than             :

By the definition of   , 

From before, we have

Thus  

• cannot be too much bigger than           :

By the definition of   , 

From before, we have

Thus  



The upshot

Thus, 

Bottom line: As long as     isn’t too big (             ) then we can be reasonably 

confident that           isn’t too much larger than

Of course, the trick in doing a good job of learning is ensure that            is actually 

small

To achieve this, we need a “rich” set of possible hypotheses… 

unfortunately…



Fundamental tradeoff

More hypotheses ultimately sacrifices our guarantee that ,

which causes the whole argument to break

Richer set of hypotheses 

“Richness” of hypothesis set

Error
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