ECE 6254, Spring 2024
Homework # 6

Due Tuesday, April 23, at 11:59pm EST.

Problems:

1. Neural networks outputs as probabilities. Suppose we are applying a neural network
to a classification problem with K classes. One approach to predicting a class label, as well
getting some notion of “confidence” is to map an input to a discrete probability distribution
over all K classes. One way to do this is to have the neural network will map an input data
point & € RP to a vector z € RE, then pass z through the softmaz function o : RX — RX.
We will denote output vector of the softmax as p € R¥, with i-th entry given as

e

B Zszl ek

In this problem, we explore connections between the softmax function and projection onto
the K — 1 dimensional simplex, defined as:

b; (1)

K
AK_1={pERK:ZpkzlandkaOVk:I,...K} (2)
k=1

‘We will show that

p=o0(z) =argmin— (z,x) — H(x)
zeRK

s.t. zi:xk::l

where H is the entropy of x, defined as

K
H(x)=— Z xy log(xy)
k=1

For this problem, you will need a slightly more general version of the Lagrangian/KKT
conditions that the one in class in order to account for the equality constraint. This can be
found here: https://en.wikipedia.org/wiki/KarushKuhnTucker_conditions.

(a) What is the Lagrangian for the above projection?

(b) Write down the KKT conditions for the above problem.
(¢) Using the KKT conditions, show that p; = <&

E:f;1ezk.



2. Classification and regression with neural networks In this problem, we’ll investigate
the performance of neural networks! as both classifiers and regressors. In particular, we will
use a very basic type of neural network called the multi-layer perceptron (MLP) for both
settings. To get started, download neural net.py.

(a) The provided code loads the same digits dataset used in the previous problem, but with
all 10 classes. Train a MLP classifier with the provided training set. Set max_iter=1000.
Feel free to adjust other parameters such as hidden_layer_sizes (both size of the layers
and number of layers) or activation. Report the test accuracy and the configuration
of parameters that achieved this accuracy.

(b) The provided code generates noisy samples of the function sin(9z) + z. Train a MLP
regressor with the provided training set. Set max_iter=1000. Feel free to adjust other
parameters such as hidden_layer_sizes (both size of the layers and number of layers)
or activation. Report the mean squared error on the test set and the configuration of
parameters that achieved this error. Include a plot of the true function and the neural
network output.

In practice, neural networks are not implemented with scikit-learn, but rather with dedicated frameworks such
as PyTorch (https://pytorch.org). Such frameworks often have a bit of a learning curve, so we use the scikit-learn
implementation for this problem.



